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PROPERTIES OF WORKING FLUIDS FOR THERMOACOUSTIC REFRIGERATORS

ANNUAL REPORT

I. Brief Description of Project

The objective of this project is to provide thermophysical property data for candidate
working fluids in a form suitable for optimizing the design of thermoacoustic refrigerators. The
data will be provided in a computer program that calculates the properties of the most promising
gas mixtures. This package will consist of currently available data from the literature (provided
that it is of sufficient quality) and our own measurements (when insufficient literature data exist).
The properties provided are viscosity, thermal conductivity, Prandtl number, density, speed-of-
sound, specific heat, enthalpy, and entropy for temperatures between -20 and 30 C and pressures
up to 20 bars. We will also explore methods of varying the composition of the working fluid to
maintain a constant speed of sound over the operating range of the refrigerator.

II. Brief Description of Approach Taken

The computer program NOBLEG is an adaptation of our reference database for
alternative refrigerants known as REFPROP. NOBLEG is specifically optimized to provide gas
phase properties for noble gases, a few other simple gases, and their mixtures. The density,
speed-of-sound, enthalpy, and entropy are calculated from the equation of state and the ideal gas
heat capacity. The data originated from a combination of published measurements, our own
measurements, or calculations from the best-known intermolecular potentials. The transport
properties are calculated from collision integrals or from fits to actual measurements.

We measure the speed of sound in gases with a high Q acoustic resonator that has been -
well characterized. With this technique, we can measure sound speeds to about 0.01% and heat
capacities to about 0.1%. We can also get accurate information about the equation of state at low
temperatures from the acoustic data. In order to determine the speed of sound in an arbitrary
mixture of two noble gases, the interaction acoustic virial coefficients 5,,, ¥,,,, and ¥,,, must be
measured in addition to the pure gas virial coefficients 3,,, ¥,,;, B, and ¥,,,. Three mixtures of
known composition, in addition to samples of the pure components, are required for these
measurements. '

Our apparatus for determining gas densities is based on the Burnett technique, and
with it we can determine densities to about 0.02% over a wide temperature and pressure range.
The Burnett data are combined with the acoustic data to determine the final PpT surface. Again
three mixtures must be studied in order to determine the interaction virial coefficients B,, C,,,,
and C,,,. .
We have two devices for measuring transport properties of gases which have been
developed under this project. The first is the Greenspan acoustic viscometer and the other is a




device for measuring the Prandtl number. Both of these devices utilize new techniques and show
great promise for being the preferred method of measuring transport properties of gases.

III. Brief Description of Accomplishments

A. Density of He-Xe mixtures

We have completed PpT measurements on helium, xenon, and three helium-xenon
mixtures. The He/Xe mixtures had nominal molar compositions of 75/25, 50/50, and 25/75. The
precise composition of each mixture was determined from speed of sound measurements. The
measurements span the temperature range 273 K to 373 K, and a pressure range 0.5 to 5.0 MPA.
Approximately 250 data points define the PpTx surface from which the interaction virial
coefficients will be determined. A final analysis will be performed when the acoustic
measurements are complete. (See Appendix A for a detailed report)

B. Experimental measurements of viscosity and Prandtl number

We have measured the viscous diffusivity of argon, helium, and propane using four
Greenspan viscometers with different geometries. Figure 1 shows a cross section of one such
device. The model used to analyze the data is described in section C below. The measurements
were performed at pressures between 25 and 1000 kPa, and spanned a factor of 350 in viscous
diffusivity, as shown in Fig. 2. For each of the instruments, the results for the viscosities of the
three gases were consistent within + 0.5%. Without calibration, the viscosities deduced from “the
best” viscometer were 1% larger than data from the literature; the viscosities from “the worst”
viscometer were 3% larger than data from the literature. The systematic differences can be
removed by calibration with a single gas at a single temperature and pressure to yield results that
fall within = 0.5% of the literature data. The apparatus is currently being modified to extend the
temperature and pressure ranges in preparation for v1scosxty measurements on He-Xe mixtures. .
(See Appendix B for a detailed report)

We have developed a second acoustic device with which information about both the
thermal conductivity and the viscosity of a gas may be obtained. The device is a modified
cylindrical acoustic resonator with an insert in the middle, as shown in Fig. 3. The insert consists
of many parallel, hexagonally-shaped ducts and has a large surface area-to-volume ratio. The
increased surface area near the center of the resonator causes a corresponding increase in the
energy loss there. Whether the increased loss is due to viscous drag or to heat transport depends
on the acoustic mode under study. Modes for which the tangential particle velocity has an anti-
node within the insert (odd-numbered longitudinal modes) will exhibit an increased viscous loss.
Modes for which the acoustic temperature has an anti-node within the insert (even-numbered
longitudinal modes) will exhibit an increased thermal loss. Figure 4 shows how the even and odd
modes are shifted relative to the modes without the insert, consistent with our model (see section
C). Although the present device is not suitable for absolute measurements of viscosity and
thermal conductivity, it is possible to obtain accurate measurements of the Prandt] number. We
have completed a series of Prandtl number measurements for argon, helium, and propane. The




measurements were performed at room temperature and spanned pressures between 40 kPa and
1000 kPa. Figure 5 shows the measured Prandtl numbers as differences from the values based on
data from the literature. If the systematic differences were removed by a calibration with argon,
then the Prandtl numbers for helium would fall within 0.5% of the literature values, and the
Prandtl numbers for propane would be within 1.5% of the literature values. Note that these
differences fall within the estimated errors of the literature data.

C. Theories for the Greenspan viscometer and the Prandtl number meter

Jim Mehl has performed extensive numerical calculations of the acoustic response of
the Greenspan viscometer. His results have been used to verify the analytic model, to provide a
theoretical basis for the duct end corrections, and to test the importance of various geometrical
perturbations. Mehl has calculated the inertial and dissipative effects of nonuniform flow near the
ends of the duct; current analytic models of these effects are based on approximations of the flow
field whose accuracy is uncertain. These effects are included in the analytical model through a
series acoustic impedance Z,,,

Z i = (PlA,)(i6,+ &)

where &, is the inertial correction given by

Ie) ¥ L. r
—1=08215-1.107—% + ¢
Ta Ton 312

d

in terms of the duct radius r,, the chamber radius r, and the chamber length L. The inertial
correction directly affects the resonance frequency. The dissipative correction Jy describes
additional viscous dissipation due to nonuniform flow just inside and just outside the duct
opening, and it is approximately equal to 0.814, for our geometry. An important advantage of
Mehl’s approach is that any geometry can be investigated. Mehl has investigated the effects of
rounding the corner at the ends of the duct. For instance, if the corner is rounded with a radius
equal to 0.1r, then & is reduced to 0.744,. (See Appendix C1 for a detailed report)

We have developed a quantitative analytic model for the Greenspan viscometer that
includes thermoviscous losses in the duct and in the chambers, duct end corrections, the presence
of a fill duct, and transducer response. This model describes the response of the gas as a function
of the drive frequency in terms of the gas properties and the resonator geometry. The model is
central to the determination of gas viscosity from our experimental measurements with this
device. (See Appendix C2 for a detailed report)

We have also developed a model for the Prandtl number meter mentioned in section B
above. Our model assumes that the entire volume of the device as a series of parallel circular
ducts. Each duct is divided into three sections along its length. The central section has a length L,
and cross sectional area 4 and represents the portion within the insert. This section is treated with
a thermoviscous boundary condition. The two outer sections of the duct each have a length L,
and cross sectional area 4 >4. These sections are treated with slip boundary conditions. The
total length of the resonator L equals 2L, + L, The model predicts that the odd-numbered




longitudinal modes of this device will be shifted to lower frequencies relative to a resonator
without an insert, whereas the even-numbered modes will be shifted upwards in frequency. (See
Appendix C3 for a detailed report)
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Progress Report — Burnett PpT Data
By James W. Schmidt

I. Results and Preliminary Analysis.

Vapor-phase PpT measurements were made on helium, xenon, and mixtures of helium
+ xenon with the nominal compositions (expressed as mole fractions He/Xe) 75/25, 50/50,
and 25/75. The Thermophysics Division Burnett apparatus was used for measurements
which span a temperature range 273K to 373K, and a pressure range 0.5 to 5.0 MPa. Five
isochors from each samples produced data, that can be represented by virial equations of
the following form:

P(p,T)=RTp[1+B(T)p+ C(T?pé+D(i”)p3+E(T')p4] , Eq. (1)

where P is the pressure, R = 8.314510 J/mol-K is the universal gas constant, T is the
kelvin temperature, and p is the molar density. The virial coefficients B(T), C(T), D(T)
and E(T) were fitted to polynomial functions of the temperature of the forms:

“B(T) = bo+ by/ T + byf T

C(T) = ¢y + Cl/T
D(T) = dy + d1/T
E(T) = e : Eq. (2)

where the by, ¢j, di, and e;, were the fitting parameters. Three parameters in addition to a
run constant were used to fit the PpT surface of pure helium. Five parameters in addition
to a run constant were used to fit the PpT surface for the 75/25 and 50/50 He/Xe
mixtures. Seven parameters in addition to a run constant were used to fit the Pp T surface
for the 25/75 He/Xe mixture. Eight parameters in addition to a run constant were used to
fit the PpT surface for xenon. -~ Values for these parameters are given in Tables I(a-).

Figures 1(a—e) show the deviations of the measured pressures from the fitted surfaces
given by Eqgs. 1-2 and Tables I(a—¢). Tables II(a—€) give the PpT data and their
deviations from the fitted surface.




II. Materials and Handling

The mixtures were obtained from Matheson Gas Products.! A gas chromatograph
indicated that the samples had a purity of approximately 99.994%. The mixtures were
used without further purification. After the measurements with the Burnett apparatus
were completed, some of the used sample was collected and reanalyzed with the gas
chromatograph. No additional impurities were detected. The compositions of the three
mixtures were analyzed by John Hurly via sound speed measurements. His analysis
indicated compositions of 74.132/25.868, 47.331/52.669, and 20.129/79.871.

II. Future Analysis.

The present representation of the data uses 33 parameters of which 5 are "run"
parameters that are not listed below and the remaining 28 are "thermodynamic"
parameters. We will reanalyze all of the data applying physically reasonable constraints
and including the low-temperature speed-of-sound data that we are now acquiring.

The reanalysis of the Burnett data will use the constraints: 1. Two run constants will
be used instead of five run constants. One run constant will be used for the pure xenon
data and the second will be used for the rest of the data. The apparatus was overhauled
between the acquisition of the xenon data and the acquisition of the rest of the data
requiring the introduction of a second run constant. 2. The values of Bpe(T) and Bye( T)
are known very well from other experiments and from ab initio calculations. Thus,
information from the literature will replace the five fitted parameters that fepresent Bre(T)
and Bye(T). 3. For binary mixtures, B(T) has the functional form

B( T)mix = Bhe(T)zﬁe + Bhexe( T)Zhezxe + Bxe( T)flbzte
Thus, a single the function Bpexe(T) using 2 or 3 parameters will replace the 9 parameters
used to represent the three functions B( T) for the three mixtures. 4. For binary mixtures,
C(T) has the functional form

C( T)mix = Che( T)l'ﬁe + Chehexe( T)-'Lﬁezxe + Chexexe(ﬂxhe%zce + Cxe( T):I},%e.
Thus, two functions Chehexe(T) and Chexexe(T) will replace the three functions C(T) for
the three mixtures. This chanEe will replace 6 parameters with either 3 or 4 parameters.
In summary, 28 thermodynamic parameters will be replaced with 13 to 15 parameters.

{In order to describe materials and experimental procedures adequately, it is
occasionally necessary to identify commercial products by manufacturer’s
names or labels. In no instance does such identification imply endorsement
by NIST, nor does it imply that the particular product or equipment is
necessarily the best available for the purpose.




Table I(a). Fitting parameters
bO) Co

B(T)/(mol/L)  1.10743x10?
Q(T)/(mol/L)>  8.16508x1072

Table I(b). Fitting parameters

bo, co
B(T)/(mol/L) 2.00409x102
Q(T)/(mol/L)?  -1.68418x103

Table I(c). Fitting parameters
bO) Co

B(T)/(mol/L) 3.10923x102
A T)/(mol/L)?  -1.55805x1073

Table I(d). Fitting parameters
bO; Co, dO

B(T)/(mol/L) 4.84516x102
A T)/(mol/L)?  -1.92411x1072
D(T)/(mol/L)®  7.50388x1072

Table I(e). Fitting pa.tametgrs
bO) Co, dO) €o

B(T)/(mol/L) 2.43224x107?
AT)/(mol/L)?  2.53341x107*
D(T)/(mol/L)®  4.03573x1073
E(T)/(mol/L)*  -1.90974x1073

Helium

by
0.190775 K

He/Xe 75/25

bl, Ct
5.45926x102 K
0.663494 K

He/Xe 50/50

bl) €1
-6.79584 K
0.847894 K

He/Xe 25/75

Xenon

by, ¢1, do

-j19.3586 K
6.80292 K
-2.34137 K

by, ¢y, dy

-15.8491 K
-1.62404 K
1.04594 K

by
1.04332x10% K?

b2
-2.41985x10% K2

b,
—4.98942x103 K?

ba
-8.42082x10% K?




Table II Oc

Vapor Phase PVT data - Helium
Temp/C Press/MPa density/ (mol/L) ((P-Pfit) /P) x100%
1 0.001 3.41262 1.47681 -0.008
2 19.963 3.65913 1.47557 0.005
3 40.010 3.90600 1.47432 0.010
4 60.017 4.15172 1.47308 0.009
5 79.991 4.39633 1.47185 0.001
6 100.000 4.64083 1.47060 -0.007
7 95.991 4.64093 1.47060 -0.003
8 9%.991 4.64092 1.47060 -0.003
9 99.994 4 .64095 1.47060 -0.003
10 100.002 2.58603 0.82557 0.000
11 100.002 2.58605 0.82557 0.001
12 0.046 1.90143 0.82905 -0.012
13 15.964 2.03852 0.82835 0.001
14 40.008 2.17609 0.82766 0.005
15 59.969 2.31280 0.82696 0.007
16 79.997 2.44962 0.82626 0.004
17 99.977 2.58567 0.82557 -0.007
18 99.969 2.58587 0.82557 - 0.003
19 99.969 2.58589 0.82557 0.003
20 99.968 1.44555 0.46346 0.002
21 99.968 1.44556 0.46346 0.002
22 0.042 1.06279 0.46541 -0.017
23 19.962 1.13942 0.46502 -0.007
24 40.009 1.21636 0.46463 -0.001
25 59.972 1.29279 0.46424 -0.001
26 79.997 1.36934 0.46385 0.001
27 100.017 1.44575 0.46346 0.003
28 100.006 1.44571 0.46346 0.003
29 100.006 1.44565 0.46346 -0.001
30 100.006 0.80964 0.26017 -0.002
31 100.006 0.803963 0.26017 -0.003
32 0.045 0.59527 0.26127 -0.005
33 20.008 0.63819 0.26105 -0.010
34 40.000 0.68122 0.26083 0.003
35 40.001 0.68121 0.26083 0.001
36 59.969 0.72399 0.26061 -0.004
37 79.994 0.76689 0.26039 0.000
38 99.974 0.80957 0.26017 -0.002
39 99.966 0.80955 0.26017 -0.003
40 99.966 0.80955 0.26017 -0.003
41 99 .966 0.45389 0.14606 0.003
42 99.966 0.45388 0.14606 0.000
43 0.029 0.33380 0.14667 0.025
44 19.999 0.35791 0.14655 0.026
45 39.999 0.38201 0.14643 0.028
46 60.006 0.40590 0.14630 -0.014
47 79.980 0.42990 0.14618 -0.007
48 100.001 0.45394 0.14606 0.004
49 99.988 0.45393 0.14606 0.006
50 99.988 0.45398 0.14606 0.017

51 99.990 0.25457 0.08199 -0.022




Table II é

Vapor Phase PVT data - He-Xe 75/25
. Temp/C Press/MPa density/ (mol/L) ((p-Pfit) /P) x100%
1 0.033 3.47048 1.51108 -0.002
2 19.998 3.72982 1.50981 0.001
3 39.993 3.98834 1.50854 0.001
4 39.995 3.98837 1.50854 0.001
5 59.928 4.24504 1.50728 -0.001
6 79.980 4.50231 1.50600 -0.004
7 100.010 4.75877 1.50473 -0.001
8 99.994 4.75868 1.50473 0.001
9 99.993 4.75874 1.50473 0.003
10 99.993 4.75874 1.50473 0.003
11 99.996 2.64899 0.84473 -0.003
12 99.996 2.64902 0.84473 -0.002
13 0.032 1.93808 0.84829 0.002
14 39.984 2.22357 0.84686 0.006
15 19.988 2.08088 0.84758 0.003
16 59.959 2.36537 0.84615 -0.004
17 79.977 2.50728 0.84544 -0.007
18 100.007 2.64891 0.84473 -0.009
19 100.002 2.64912 0.84473 0.001
20 100.002 2.64912 0.84473 0.001
21 100.005 1.48021 0.47421 0.002
22 100.005 1.48020 0.47421 0.002
23 0.030 1.08506 0.47621 0.001
24 19.998 1.16437 0.47581 0.002
25 39.993 1.24359 0.47541 0.003
26 59.954 1.32247 0.47501 0.002
27 79.980 1.40147 0.47461 0.006
28 99.955 1.48003 0.47421 0.004
29 100.002 1.48022 0.47421 0.004
30 100.000 1.48021 0.47421 0.004
31 100.000 1.48017 0.47421 0.001
32 99.998 0.82875 0.26621 0.002
33 99.998 0.82874 0.26621 0.001
34 0.028 0.60817 0.26734 ~-0.014
35 19.995 0.65234 0.26711 -0.021
36 39.987 0.69658 0.26689 -0.010
37 59.933 0.74069 0.26666 0.007
38 79.976 0.78485 0.26644 0.012
39 100.004 0.82886 0.26621 0.014
40 99.998 0.82877 0.26621 0.004
41 99.998 0.82871 0.26621 -0.003
42 99.999 0.46455 0.14945 0.002
43 99.999 0.46454 0.14945 0.000
44 0.023 0.34108 0.15008 -0.032
45 19.992 0.36581 0.14995 -0.031
46 39.984 0.39057 0.14982 -0.019
47 59.961 0.41519 0.14970 -0.023
48 79.993 0.440600 0.14957 0.010
49 99.966 0.46459 0.14945 0.019
50 99.957 0.46453 0.14945 0.008
51 99.957 0.46446 0.14945 -0.008

52 99.957 0.26049 0.08390 -0.019




Table II &
Vapor Phase PVT data - He-Xe 50/50
Temp/C Press/MPa density/ (mol/L) ((P-Pfit) /P) x100%
1 99.952 4.90697 1.59025 0.004
2 99.955 4.90702 1.59025 0.004
3 99.955 4.90683 1.59025 0.000
4 0.033 3.48965 1.59695 -0.004
5 19.997 3.77671 1.59561 0.001
6 39.991 4.06198 1.59427 0.004
7 59.958 4.34452 1.59293 -0.005
8 79.974 4.62660 1.59159 -0.003
9 99.959 4.90672 1.59025 -0.003
10 99.957 4.90691 1.59025 0.001
11 99.957 4 .90695 1.59025% 0.002
12 99.958 2.75979 0.89273 -0.004
13 99.958 2.75983 0.89273 -0.002
14 0.037 1.99116 0.89650 0.008
15 20.003 2.14622 0.89574 0.008
16 39.995 2.30074 0.89499 0.010
17 59.962 2.45412 0.89424 0.002
18 79.984 2.60725 0.89349 -0.008
19 100.020 2.76008 0.89273 -0.010
20 100.006 2.76018 0.89273 -0.003
21 100.006 2.76022 0.89273 -0.001
22 100.003 1.55177 0.5011e6 0.007
23 100.003 1.55190 0.50116 0.015
24 0.034 1.12839 0.50327 -0.010
25 19.997 1.21353 0.50285 -0.004
26 39.992 1.29847 0.50243 0.000
27 59.956 1.38280 0.50201 -0.011
28 79.973 1.46739 0.50158 -0.001
29 100.005 1.55147 0.50116 -0.013
30 99.988 1.55172 0.50116 0.007
31 99.988 1.55174 0.50116 0.009
32 99.991 0.87191 0.28134 0.012
33 99.991 0.87190 0.28134 0.011
34 0.029 0.63689 0.28253 -0.024
35 19.997 0.68408 0.28229 -0.016
36 39.990 0.73120 0.28205 -0.008
37 60.007 0.77825 0.28182 -0.001
38 79.982 0.82507 0.28158 0.003
39 100.016 0.87186 0.28134 0.000
40 100.010 0.87196 0.28134 0.014
41 100.010 0.87194 0.28134 0.011
42 100.006 0.48973 0.15794 0.010
43 100.006 0.48970 0.15794 0.003
44 0.033 0.35857 0.15861 -0.055
45 20.000 0.38488 0.15847 -0.039
46 39.995 0.41119 0.15834 -0.020
47 60.001 0.43750 0.15821 0.008
48 79.983 0.46362 0.15807 0.010
49 100.015 0.48969 0.15794 -0.001
50 100.014 0.48975 0.15794 0.012
51 100.014 0.48973 0.15794 0.007
52 100.009 0.27496 0.08866 -0.008




Table II A

Vapor Phase PVT data

Wogaummbd wio =

VMU B R BDDBRBRBEDEWUUNWBWNWWENWWWNNNRNNNNONNONRRRRERHRR [ [
NHFOWVWENOAUBWNHROWVWONIANPWNHOWVONIAUBDWNROWVWONOU®D WM H O

Temp/C
100.00°
100.009
100.008
-0.012
19.995
39.992
60.010
79.971
99.992
99.988
99.988
99.988
99.984
0.032
19.996
39.994
60.039
79.978
99.959
99.955
99.955
99.957
99.957
-0.017
39.994
59.988
79.976
99.992
99.994
99.991
99.991
99.995
-0.021
19.997
39.997
59.946
79.994
99.959
99.949
99.949
99.948
99.948
0.034
19.998
39.897
59.959
79.978
99.957
99.954
99.954
99.954
99.951

Press/MPa
.21332
.21331
.21320
.88250
.15459
.42298
.68858
.95124
.21297
.21310
.21313
.21313
.42309
.71248
.85639
.99942
.14174
.28249
42271
.42295
.42299
.37953
.37951
.99190
.14807
.22557
.30273
.37962
.37965
.37968
.37967
.78080
.56668
.60984
.65279
.69531
.73808
.78052
.78069
.78063
.44028
.44023
.32122
.34508
.36901
.39271
.41652
.44015
.44029
.44031
.44026
0.24775

COO0OO0OOCOCOOKRHKEREFHRHEFRORRENMNMNNMDERRINDD B OB WWWWN BB

[=NelolNeNoNeNeNeNoNeNo Not

- He-Xe 25/75
density/ (mol/L)

1.43677
1.43677
1.43677
1.44283
1.44162
1.44040
1.43919
1.43798
1.43677
1.43677
1.43677
1.43677
0.80657
0.80997
0.80929
0.80861
0.80793
0.80725
0.80657
0.80657
0.80657
0.45279
0.45279
0.45470
0.45394
0.45356
0.45317
0.45279
0.45279
0.45279
0.45279
0.25419
0.25526
0.25505
0.25483
.25462
.25440
.25419
.25419
.25419
.14270
.14270
.14330
.14318
.14306
.14294
.14282
.14270
.14270
.14270
.14270
.08011

[=leNoleoNelNeRoNoNoNoNoNoNoNoNeNeNel

((P-Pfit) /P) x100%
0.001
0.001

-0.002
-0.004
0.005
0.005
-0.004
-0.007
-0.002
0.002
0.003
0.003
0.002
-0.002
0.000
0.001
-0.002
-0.002
-0.007
0.004
0.006
-0.001
-0.003
0.011
0.003
0.003
0.002
-0.004
-0.003
0.000
-0.001
0.011
0.001
0.006
0.008
-0.017
-0.014
-0.016
0.009
0.001
0.023
0.013
-0.044
-0.042
-0.016
-0.023
-0.007
-0.007
0.024
0.028
0.018
0.011




Table II €, -

Vapor Phase PVT data - Xenon - Boyes & Gillis
Temp/C Press/MPa density/ (mol/L) ((P-Pfit) /P) x100%
1 0.000 2.75793 1.56662 -0.002
2 0.000 1.73889 0.87911 -0.001
3 0.000 1.03875 0.49331 0.001
4 0.000 0.60306 0.27682 0.009
5 0.000 0.34470 0.15534 -0.005
6 0.000 1.96115 1.01383 0.001
7 0.000 1.18353 0.56891 -0.002
8 0.000 0.69086 0.31924 0.000
9 15.000 1.92238 0.91231 0.001
10 15.000 1.14298 0.51194 0.003
11 15.000 0.66193 0.28727 ~-0.003
12 15.000 0.37788 0.16120 -0.018
13 15.000 2.50226 1.24772 0.001
14 15.000 1.52152 0.70016 0.000
15 15.000 0.89205 0.39289 -0.001
16 15.000 2.57276 1.29120 0.002
17 15.000 1.56900 0.72456 0.000
18 15.000 0.92134 0.40658 -0.003
19 15.000 2.87987 1.48891 0.003
20 15.000 1.78032 0.83550 -0.002
21 15.000 1.05309 0.46884 -0.005
22 15.000 0.60826 0.26309 0.001
23 30.000 3.14773 1.51784 0.000
24 30.000 1.92796 0.85173 -0.001
25 30.000 1.13528 0.47795 -0.001
26 30.000 0.65421 0.26820 0.006
27 30.000 0.37248 0.15050 0.000
28 30.000 2.79694 1.31248 -0.005
29 30.000 1.69227 0.73649 0.002
30 30.000 0.98983 0.41328 0.003
31 30.000 0.56827 0.23191 0.008
32 -30.000 1.54660 0.66711 -0.001
33 30.000 0.90099 0.37435 0.001
34 30.000 0.51612 0.21006 0.006
35 30.000 0.29287 0.11788 -0.013
36 85.000 3.35255 1.25848 0.000
37 85.000 1.97557 0.70620 0.003
38 85.000 1.13964 0.39628 -0.006
39 85.000 0.64950 0.22237 0.001
40 85.000 0.36761 0.12478 0.003
41 85.000 3.01369 1.11733 0.000
42 85.000 1.76641 0.62699 0.001
43 85.000 1.01586 0.35183 -0.003
44 85.000 0.57793 0.19743 0.002

85.000 0.32678 0.11079 0.004
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Greenspan acoustic viscometer for gases

K. A. Gillis, J.B. Mehl, and M.R. Moldover
Thermophysics Division, National Institute of Standards and Technology, Gaithersburg MD
20899

Double Helmholtz acoustic resonators, first proposed by Greenspan for measuring the
viscosity of gases, were tested with helium, argbn, and propane. Two different resonators
were tested extensively with all three gases. For each of these instruments, the results for
the viscosities of the three gases were consistent within + 0.5 % at pressures spanning the
range 25 kPa - 1000 kPa. Without calibration, the viscosities deduced from one viscometer
were systematically 1% larger than data from the literature; the viscosities from the second
viscometer were systematically 3% larger than data from the literature. If the systematic
differences were removed for each viscometer by calibration with a single gas at a single
temperature and pressure, then nearly all the results for both instruments would have
fallen within + 0.5% of the data from the literature. In these viscometers, the test gases are
in contact with robust metal parts only; thus, these instruments are applicable to a very

wide variety of gases over a very wide range of temperatures.

CONTRIBUTION OF THE NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY. NOT SUBJECT TO COPYRIGHT.




I. INTRODUCTION

Double Helmholtz acoustic resonators can be designed to have large viscous losses in
the duct connecting the two chambers. (See Fig. 1.) When this is done, the frequency
‘response of these resonators becomes a sensitive function of the viscosity of the gas within
the resonator. We call such resonators "Greenspan viscometers" in honor of Greenspan’s
conception of this method of measuring the viscosity of a gas!

In 1953, Greenspan and Wimenitz! tested double Helmholtz acoustic resonators as
viscometers. Their results for the kinematic viscosity of air differed from the literature
values by as much as 38% and they concluded "the method described does not at present
offer a satisfactory basis for an instrument for the measurement of viscosity." In this work,
we revisit the method using improved instrumentation, modeling, and control of the
properties of the test gases. We now conclude that with calibration, the method is capable
of yielding state-of-the art results under a wide range of conditions. We suggest that
further study of the method is warranted for developing a primary standard Greenspan
viscometer. Such a standard would be a robust instrument that could be used to check the
oscillating disk viscometer that is now used as a standard.

Our optimism is based on measurements of the frequency responses of four Greenspan
viscometers, each tested with three gases (helium, argon, and propane) at pressures
spanning the range 25 kPa - 1000 kPa. Although all of the data were taken at ambient
temperature (22° C), they span a factor of 350 in viscous diffusivity. This range
7x 107" m?-571.< Dy < 2 x 10 m2-5°1is displayed graphically in Fig 2. (Here, D = 5/p,
where 7 is the viscosity and p is the mass density.)

Of the four Greenspan viscometers, two were studied more extensively than the
others. One, designated "viscometer 1" was the "best." The other, designated "viscometer
0" was the "worst." The dimensions of these viscometers were accurately determined with
a coordinate measuring machine. Thus, the viscosity could be deduced from these two

viscometers without calibration. For each of these viscometers, the viscosities of all three
2




gases were consistent within + 0.5 % except at the very lowest pressures. Without
calibration, the viscosities from viscometer 1 were systematically 1% larger than data from
the literature; the viscosities from viscometer 0 were systematically 3% larger than data,
from the literature. If the systematic differences were removed by calibration of each
viscometer with a single gas at a single temperature and a single pressure above 100 kPa,
then nearly all the results for both instruments would have fallen within + 0.5% of the data
from the literature.

To put the performance of these Greenspan viscometers in perspective, we note that
an uncertainty of + 1 % is near the state of the art in gas viscometry. In a recent
publication based on ab initio calculations for helium, Aziz et al.? argued that the viscosity
of helium as determined by the best measurement to date was systematically in error by
0.3%.. The inconsistencies among gas viscometers from various laboratories are usually
much larger than 0.3%.

In the Greenspan viscometer, an acoustic transducer coupled to the chamber V;
forces the test gas to oscillate through a duct leading to a second chamber V,. The
oscillatioﬁs are driven at frequencies near the Helmholtz resonance, which, in the lowest
approximation is:

2

wi = 5%—‘:—‘1 [ %7; + 1172-] : (1)
Here, ¢ is the speed of sound in the gas, Aq is the cross sectional area of the duct, and Lg
is the length of the duct. In the instruments described here, fy = w,/(27) falls in the range
100 Hz < fo < 200 Hz when co » 300 m/s. This frequency range is a factor of 10 to 100
below the frequencies of other resonances that might complicate the analysis of the
frequency response data; other resonances include acoustic resonances of the gas in the
chambers, mechanical resonances in the transducers, and resonances in the mechanical
structure of the Greenspan viscometer itself.

Most of the viscous dissipation occurs within the duct where the velocity of the gas is




highest. Thus, the duct in the oscillating flow of the Greenspan viscometer plays a role
analogous to that of the capillary tube in the unidirectional flow of the familiar Ubbelohde
or Cannon-Fenske viscometers®. In particular, the duct’s dimensions must be well known;
the duct must be kept clean, and the effects of converging and diverging flows near the
ends of the duct must be accounted. for in the analysis of the data.

The viscosity is deduced from measurements of the frequency dependence of the
acoustic pressure detected by an acoustic transducer coupled to the chamber V; as the
frequency of the acoustic source in Vis scanned through the Helmholtz resonance. (See
Fig. 3.) Thus, the frequency responses of the electroacoustic transducers must be linear (or
known) in the frequency range of interest. However, the transducers need not be
calibrated. Indeed, they need not be stable for intervals longer than the minute or so
required to measure the viscosity at a given temperature and pressure. In contrast, the
- differential pressure transducers used to determine the viscosity in unidirectional flow
viscometers must be stable and calibrated.

To date, our experience indicates that the Greenspan viscometer operates well with
@s of 10 6r larger. (When the losses are not too large, the amplitude—vs—frequency
response function is approximately Lorentzian. The Q is defined as f, / (29), where 2g is
the full resonance width at 1/4/2 of the maximum amplitude.) - Thus, the transducers need
to be characterized over a comparatively nafrow frequency range. This easy-to-meet
requirement together with the small values of fy will facilitate the operation of future
Greenspan viscometers with remote acoustic transducers coupled to the test gas via
acoustic wave guides and diaphragms such as those described by Gillis et al*

Below, we provide a heuristic model useful for designing and understanding the
operation of the viscometer. We report the results of a more detailed model that will be
described elsewhere. We shall describe the test viscometers, the measurement procedures,
and the test results. We conclude by discussing the potential for developing the Greenspan

viscometer into a primary standard viscometer for gases.
4




II. HEURISTIC MODEL.

Here, we present a simple model for the Greenspan viscometer that is useful for
insight and design purposes, but not for the most accurate analysis of data. When this
model is applicable, the resonance frequency of the double Helmholtz resonator is simply
related to the speed of sound in the test gas and the half-width of the resonance is simply
related to the viscosity of the test gas. The model is approximately correct for the
experimentally important conditions in which both the viscous penetration length 6, and
the thermal penetration length &; are much smaller than the radius of the duct rg. The

penetration lengths are given by the relations:

by

m

nlpw | ' (2)
and

6 = 2X[pCpow . - (3)
Here, A is the thermal conductivity of the gas and pCp is the constant-pressure heat-
capacity per unit volume of the gas.

We .note that thermal effects within the duct are small because the acoustic
temperature has a node in the duct that corresponds to the velocity antinode there. In
some geometries, the thermal losses may be important; the detailed acoustic model shows
this quantitatively. |

In the lowest order approximation, one may consider the gas in the duct to be the
inertial element of an oscillator and the pressure difference between the two chambers to
provide the stiffness. In the vicinity of the Helmholtz resonance frequency, the duct is
much shorter than the wavelength of sound; thus the gas moves uniformly in the duct
along its length and the moving mass is m = pAqLq, where p is the density of the gas. The
stiffness is the restoring force divided by the displacement of the inertial element. If the
inertial element is displaced by Az from chamber V; towards chamber V3., a volume of gas

Ag¢Azis removed from chamber V; and injected into chamber V,. This produces a pressure
5




difference between the chambers given by

AgAz [ 1 1
do= AE ] @

where ks = — (0V/p)s/ Vis the adiabatic compressibility of the gas. The corresponding

stiffness is ApAq/Az; thus, the frequency of the oscillation is given by

9 stiffness  Aq [ 1 1 J
W8 = "mass T kspLg [Vi+V§ ’ (5)

Eq. (5) leads to Eq. (1) upon substitution of ¢f for 1/(ks-p).

To estimate the viscous energy loss in the duct, we assume, for simplicity, that the
duct is a circular cylinder with radius r4. In the limit that 6, << 7y, the velocity of most
of the gas is uniform across the duct. However, in the boundary layer in contact with the
wall of the duct, the acoustic velocity v decays exponentially to zero with the characteristic
length &y. For the case of a plane surface with a tangential velocity v far from the surface,
the viscous dissipation rate per unit area is exactly §(7/6y)v2. Using this result as an
approximation for the cylindrical duct, the ratio of the viscous energy loss per cycle to the

stored energy is

ISR ©)
1pv2-mrg2L4 d

Oy
The'ratio oy = 27/ Qy is the most significant contribution to reducing the quality factor Q
of the Helmholtz oscillations.

To estimate the energy dissipated in the thermal boundary layer, we note that, the
temperature oscillates in phase with the pressure oscillation in each chamber of the
Greenspan viscometer. However, in the thermal boundary layer in contact with the metal
walls of the chambers, the temperature oscillations decay exponentially to zero with the
characteristic length 6. The ratio of the energy dissipated in the thermal boundary layer
to the energy stored by creating a pressure difference between the chambers oy = 27/ Q; is
the second most important contribution to reducing the Q of the Helmholtz oscillations.
The heat transported from the gas to the boundary of a chamber during half of an acoustic
cycle is approximately the product: (acoustic temperature change) x (heat

6




capacity/volume) x (volume of the thermal boundary layer of the chamber). These terms
are approximated by (7-1)paks/f, pCp, and 6¢Acn, respectively. Here, v = Cp/Cy is the
heat capacity ratio; p, is the amplitude of the acoustic pressure, Acy is the surface area of a,
-chamber, and f = (0V/P)p/ Vis the volume expansivity, respectively. Of this heat
transported, a fraction on the order of (acoustic temperature change)/(temperature) is
dissipated in the boundary layer. The potential energy stored is ip? Venks where Vi is the

volume of one chamber. These estimates are combined to obtain:

thermal dissipation - [(=1)kspa/B] .pCp-cStAch,(’Y*l)lyﬁspa/ﬁ (7
potential energy 3 PaVenks

and finally

o = 2@(‘2@ . (8)

In arriving at Eq. (8), we have used the thermodymamic relation pCp = T)82/[k( ¥-1)].

The viscous and thermal losses may be combined to estimate the @ of the Helmholtz
resonance. The chambers of all of the viscometers were cylinders with lengths not very
different from their diameters; thus, we estimate Acn/Ven = 3 [ Tch, where rey is the radius

of the chamber. We obtain the simple result:

Hep= = byl (9)
Eq. (9) implies that the Greenspan viscometer is indeed a viscometer because the viscous
contribution‘to the losses is much greater than the thermal contribution to the losses. For
dilute gases, 6, and 6; have similar magnitudes and (9-1) is at most 2 /3, its value for dilute
monatomic gases. (N ear the critical point, ¥ becomes very large.) Under the conditions of
the present measurements with propane, ( 7-1) % 0.1 and 74/7ch * 0.05. Thus, the ratio of
the thermal term in Eq. (9) to the viscous term in Eq. (9) is approximately 0.005.

A useful design equation is obtained by combining Eq. (2) for §, and the viscous term
in Eq. (9)

Dy = n/p = wfo(ra/Qv)? (10)




Eq. (10) shows that Dy may be determined by combining a measurement of ry with
frequency-response data from which fy(1/@Q)? is obtained.

Even in the limit §, << 7y, additions to the heuristic argument are required for
accurate work. The viscous and thermal losses shift the resonance frequency from the
result in Eq. (5); however, Eq. (9) is still correct to first order in §,/ryq and 6t/rchn. The
converging and diverging flow in the transition regions where the duct joins the cavities
increases the mass of the oscillating gas by a factor of approximately (1 + 1.598 Ta/ Lq).
(In this work, 0.02 < 74/Lq < 0.04.) The coefficient 1.598 was determined through
numerical calculations® It depends weakly on the dimensions of the cavity and the duct,
effects that were treated correctly in the analysis but neglected in the present discussion.
Furthermore, there is excess viscous dissipation in the transition region both inside the
duct orifice and in the chamber near the orifice. The excess dissipation increases oy a
factor of approximately (1 4 1.6 r4/Lq). Finally, one must also account for the duct that

is used to admit gas to the viscometer.

III. OUTLINE OF DETAILED MODEL.

In a more detailed calculation to be presented elsewhere? we assumed that the
acoustic source strength ¢s generated by the transducer in chamber V; is proportional to
the voltage driving the source transducer. We also assumed that the complex voltage
generated by the detector transducer is proportional to the pressure p; at the detector
located in chamber V3. A calculation showed that the pressure at the inlet of the duct is
very well approximated by the average pressure in V; and that the pressure at the detector
is similarly well approximated by the pressure at the outlet of the duct.

Our model of the Greenspan viscometer is the network of acoustic impedances shown
schematically in Fig. 4. The ratio py/gs is computed from this model. Here, we identify

the elements in the network and the functional forms of their impedances.




The input impedance of each chamber Z is

Zy = pctfiwV (11)
with

V = Ven+ (1-i)(7-1)Acnbi/2 : (12)
The complex volume V differs from the geometrical volume by a term that accounts for the
admittance of the thermal boundary layer on the surfaces of the chamber.

The impedances of ducts are modeled as transmission lines with a characteristic
impedance Zj and a complex propagation parameter I' for acoustic flow in the duct given

by:

Z = (e AQ) [T = FoJ- [T ¥ (7= 7Y
r- o/l Dk (13)

(9

where Jo and Jy are Bessel functions and ¢ = (1 - 4)éy/rq for Fy and ¢ = (1 - §)6;/rq for Fe.

The approximations

Fy = (1-19)8y/rq, Fi v (1-9)68/rq (14)
are useful for the comparatively small values of 6y/rq and &;/rq encountered in this work.

The T-parameters (Fig. 4) for the duct are given by:

Zy = Zytanh(I'Lg/2), Zy = Zp [ sinh(I'Ly) (15)
The inertial and dissipative end effects are described by

Zend = (pw/Aq)(ib; + 0.816y) (16)
where §; is defined by Eq. (17) below and, in this work, 6§; » 0.874.

The dissipative part of Zeng was computed from numerical solutions of the Helmholtz
equation with Neumann boundary conditions and the geometry of the viscometers. The
solutions provided a dissipation-free model for the acoustic pressure. The losses were
determined by integrating the square of the tangential acoustic velocity. The coefficient

0.81 of 4y in Eq. (16) is the sum of two terms: the first, 0.45, is the contribution of the




tangential flow on the chamber wall ("baffle"); the second, 0.36, is the contribution from
the evanescent waves just inside the orifice.

There is an integrable singularity in the velocity at the sharp corner where the duct
joins the chamber." If the corner is rounded with a radius equal to 0.1 rg4, the coefficient
0.81 in Eq. (16) is reduced to 0.74. This change is significant; it implies that chamfers
often used in machine shop practice must be accounted for.

The reactive part of Zgng can be calculated from the numerical determinations of
either the eigenvalue or the input impedance of the cavity. As noted above, the reactive
term depends weakly on cavity dimensions. The results of the numerical calculations are
accurately described by the function

% — 08215 - 110770 4 Lona (17)
Td Tch 3r(2:h

The constant term in this expression agrees with the literature value obtained through
solutions of the Laplace equation for a duct coupled to an infinite baffle’ The second term
shows the effect of a chamber radius, in good agreement with the calculation of Ingard®
The third term comes from a correction to the chamber’s input-impedance due to the finite
length of the chamber. The sum of the three terms varies between 0.782 and 0.799 for the
four viscometers used in the current work.

As shown in Fig. 4, the fill duct can be represented by an impedance Z in parallel
with Zy. To do this, the fill duct can be replaced with a second T—equivalent network with
propagation parameters appropriate for its very small radius. In this case, the exact
functional forms for Fy and Fy must be used. The complicated expression that results will
not be reproduced here. The expression was included in the "working equation" used to
analyze our data; however, the present results are not sensitive to the effects of our very
long, thin fill duct.

-A "working equation" was constructed that expresses the measured frequency-

10




dependent voltage ratio, Vyetector/ Vsource, as the product:

Vdetector _ Vdetector P2 D2 P D1 (18)
Vsource D2 P2’ Pt pi source

The acoustic pressure ratios in Eq. (18) were expressed as functions of the impedances
defined above for the network in Fig. 4. The two ratios, Vgetector/P2 and pi/ Vsource, that -
characterize the transducers were shown to be independent of frequency by auxiliary

measurements using an acoustic coupler.

IV. APPARATUS AND MEASUREMENTS.
A. Construction of Viscometers

Fig. 1 shows a cross-section of viscometer 1. The body of the viscometer was turned
on a lathe from a single piece of aluminum. The duct was drilled undersized and then
reamed to its final size. The interior surfaces of the viscometer were not polished.

The dimensions of the viscometers’ bodies were measured with a coordinate
measuring machine. The machine logged the coordinates of surfaces that were contacted
by a 1.4 mm diameter ruby ball. The internal diameters of the ducts were measured at
1 mm intervals along the axes of the ducts.

Table I summarizes the key dimensions of the viscometers. Except for their

dimensions, all four viscometers were essentially identical.

Table I. Dimensions of the viscometer in mm.

Viscometer = Lg T4 Len Tch
0 38.092 0.7998 31.565 15.873
1 19.109 0.7976 15.749 15.875
2 28.586 0.7985 15.769 15.876
) 28.531 0.8267 31.582 15.876
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B. Transducers

Two brass flanges containing transducers were used as interchangeable ends of all of
the viscometers. These flanges were bolted to the body of the viscometer using blind
tapped holes that are not shown in Fig. 1. The joints between the flanges and the body
. -were sealed with a thin layer of organic grease. Efforts were made to avoid scratches and
crevices that might attenuate the acoustic oscillations. (Scratches, pits, etc. with at least
one dimension much smaller than é, are probably not important to the operation of
Greenspan viscometers.)

Both transducers were installed in ports machined out of each flange. The acoustic
source was a "stack" of coin—shaped piezoelectric transducers (PZT) connected.
mechanically in series and electrically in parallél. The length of the stack changed in
response to the applied voltage. The stack was separated from the test gas in chamber V;
by a 0.1 mm (0.004 in.) thick x 15 mm diameter stainless-steel foil that had been soldered
into a slight recess in the interior face of the flange. The acoustic detector was a thin
cylindrical bimorph PZT that had been removed from a commercial buzzer. The detector
was sealed behind a foil that faced the inside surface of V,. Thus, the test gas within the
viscometers was in contact with robust metal parts only: the viscometer body, the flanges,
and the foils.

Under typical operating conditions (viscometer 1, argon, 100 kPa), the source was
driven at 46 V (rms), and it generated an acoustic pressure on the order of 0.4 Pa (rms).
Allowing for the @ of the double Helmholtz resonator and the volume of chamber V;, we
estimated that the volume displaced by the source transducer was 0.014 mma3.

Under a variety of conditions, we reduced the drive voltage by a factor of 10 and
repeated the measurements of the frequency response. No changes were detected
confirming that during normal operation, the Greenspan viscometer can be described by
linear acoustics despite the presence of fairly sharp corners at the ends of the duct.

In common with other studies of acoustic resonators? the signal-to-noise ratio varied
12




as P*?. To understand this, we note that, to a good approximation, the displacement
produced by the source transducer was independent of P. Thus, well below fo, the acoustic
pressure p, in chamber V; was proportional to P. Near resonance where the viscometer
was used, p, was amplified by a factor of @ which itself was proportional to P¥"2. Even at
the lowest pressures studied, the signal-to-noise ratio was not a factor limiting the accuracy -

of the determination of the viscosity.

C. Test Conditions

To test several viscometers with several .ga,ses, we constructed a pressure vessel with
an interior volume of approximately 1800 cm3. The viscometer under test was suspended
inside the pressure vessel. This isolated the viséometer from ambient acoustic noise and
relieved us of the necessity of making every viscometer pressure-tight.

The temperature of the viscometer under test was determined by a calibrated
thermistor that had been inserted into a blind hole drilled into the viscometer’s body.
When the viscometer was suspended in the pressure vessel the thermal relaxation time
between the viscometer and the ambient air was 5 hours. In effect, the viscometer was
thermally isolated from the room on the time scale of the viscosity measurements.

For a typical test run, the pressure vessel was filled with the test gas at the highest
pressure to be studied (1 MPa for helium and argon; 600 kPa for propane), 15 minutes were
allowed to elapse for thermal equilibration, and then the frequency response, temperature,
and pressure were measured. Then some of the test gas in the pressure vessel was removed
and the operations were repeated. As the measurements progressed, the temperature of the
viscometer decreased several tenths of a degree because of the adiabatic cooling of the test
gas as the pressure was reduced. The thermometer in the body of the viscometer enabled

us to measure this effect.
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D. Fill Capillary

A fill capillary led from chamber V; to the interior of the pressure vessel. If the flow
impedance of the capillary had not been sufficiently great near the Helmholtz resonance
frequency, the capillary would have functioned as a second duct in parallel with the duct
between the two chambers. The second duct would have greatly altered the frequency
response of the viscometer and a second Helmholtz resonance might have appeared. To
achieve a high impedance, we used a stainless-steel capillary with an O.D. of 0.029"
(0.74 mm), an I.D. of 0.016" (0.41 mm), and a length of 10 cm. The capillary was sealed

into a hole that had been drilled through the body of the viscometer.

E. Frequency Response Measurements.

For each viscometer, gas, and thermodynamic state, the complex frequency response
of the viscometer was measured at 21 equally spaced frequencies that spanned the range
Jn = 2g, where f, was the frequency at which the detected signal attained its maximum
amplitude. These measurements were made with a computer-controlled frequency
synthesizer, lock-in amplifier, and digital voltmeter, using techniques that we have
described elsewhere!® Because the step-up transformer connected between the frequency
synthesizer and the source transducer did not have a flat frequency response at low
frequencies, one change was required. The detector output voltage was divided by the
voltage measured at the source transducer at each frequency.

The real and imaginary parts of the measured frequency response, such as that
displayed in Fig. 3, were simultaneously fit by Eq. (18) with the addition of a complex
background term which was either a constant or a linear function of frequency. (A
constant background term was adequate for all the data except the helium data taken with
viscometer 0.) Thus, either 6 or 8 parameters were fitted to the data. Two parameters
characterize the frequency and width of the Helmholtz resonance; two comprise a complex

amplitude that accounts for the gain of the electronics and transducers; and the two or four
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background parameters account for electrical and mechanical crosstalk between the
transducers.

Fig. 3 displays a typical example of the measured frequency response of viscometer 1
together with the deviations of the data from our model. The model represents the data
with very small systematic fractional deviations on the order of + 0.0005. The fit defines
values of g and fu with fractional imprecisions of 0.0005 and 0.0005 x g/f, & 3.5 x 105,
respectively. The resonance frequency is mainly sensitive to the viscometer’s dimensions
and the speed of sound cy; the half-width is mainly sensitive to Dy. If the model for the
viscometer were perfect, the corresponding fractional uncertainties in D, and ¢o would be

0.001 and 3.5 x 1075, respectively.

V. RESULTS.

Fig. 5 displays the results for Dy obtained with viscometer 1, the "best" viscometer.
In each case, the plot shows the fractional deviations of the measured values of Dy from
values taken from the literature. Nearly all the results for helium, argon, and propane fall
within a band + 0.005 wide centered 0.010 above the data from the literature. The ordinate
for Fig. 5 is éy/rq = 1/ @, which is the most important parameter that determines the
frequency response function. Remarkably, fqr the smallest values of 6y/7q that occur at the
highest pressures, the data for argon and the data for propane track within 0.3%. At the
larger values of 6y/rq the data for the different gases diverge. The larger values of v/ ra
occur at low pressures where the viscous boundary layer fills the duct nearly completely.
Under these conditions, the Qs of the resonances are low and the requirement of properly
accounting for the frequency responses of the transducers becomes severe. Thus, we do not
recommend using Greenspan viscometers at larger values of bv/r4.

Fig. 6 displays the results for Dy obtained with viscometer 0, the "worst" viscometer.
Again, nearly all the results for helium, argon, and propane fall within a band + 0.005 wide;

however, for this viscometer the data are centered approximately 0.025 above the data
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from the literature.

At present, we have no certain explanation for why the data from the viscometers
differ from each other. The data for the other viscometers that we have studied fall
between the data for viscometer 1 and viscometer 0. In the future, we shall report the
results of systematic investigations of the effects of surface finish and of the "end
corrections" for the converging/diverging flow fields near the ends of the duct. The ducts
of all of our viscometers had crude chamfers at their ends that were not considered when
analyzing the data.

In order to construct Figs. 5 and 6, we used information from the literature for D,
For argon, the zero-density viscosity was calculated for the HFD-B3 potential of Aziz and
Slaman!! and the density dependence was taken from Maitland et al'? For helium, the
zero-density viscosity was calculated from the potential of Ref. 2 and the density
dependence was taken from Ref. 12. For propane, the correlation by Vogel'? was used.
Because Vogel calibrated his viscometer with the data of Kestin ef al, his correlation (at
low pressures) agrees within 0.1 % with the data of Kestin et al.!* Thus, the literature
values of the viscosity for the three different gases are ultimately traceable to the same
laboratory and their mutual consistency is likely to be greater than their absolute accuracy.
As mentioned above and in Ref. 2, the viscosity data for helium near ambient temperature
appear to have a systematic error of only 0.3%.

If each viscometer had been calibrated with a single gas at a single temperature and
at a pressure with a comparatively small value of éy/rq, then nearly all the results for Dy
from that viscometer for all three gases would have been within £0.5 % of the data from
the literature.

Fig. 7 shows the deviations of the fitting parameter f; for the frequency response data
from viscometers 0 and 1 from the values predicted from the measured dimensions of the
viscometers, the speed of sound in the test gases, and the model given by Eq. 18. The

fractional deviations of f, from their expected values and the small inconsistencies of the
16




results among the three gases are very approximately the same size as the deviations of the

values of Dy; the deviations may have the same, presently unknown, cause.

VI. PROSPECTS FOR A PRIMARY STANDARD GREENSPAN VISCOMETER.

As just mentioned, the resUlt»s from the "best" viscometer contain several puzzles
that we hope will be resolved by further research. If they are, the performance of the
Greenspan viscometer will approach those of other standard viscometers. In this spirit we
contrast the Greenspan viscometer with current standards and consider directions for
further development;

The presently accepted instrument for making absolute measurements of the viscosity
of gases is based upon a disk that oscillates between fixed plates while suspended from a
delicate quartz fiber’® This instrument has a thoroughly developed theory that accounts
for the "edge corrections" resulting from the finite dimensions of the disk. The geometry of
the oscillating-disk viscometer is designed fo inhibit secondary flow resulting from either
the very low frequency (~ 0.1 Hz) oscillations or from temperature gradients. However,
oscillating-disk viscometers are difficult to maintain. To the authors’ knowledge, there is
no longer a primary standard oscillating disk viscometer in operation. The oscillating disk
viscometers are ordinarily excited with an impulse and the subsequent free decay of the
oscillations is observed. In contrast with the present study of the Greenspan viscometer,
we are not aware of studies of the frequency response of the oscillating disk viscometer
- directed towards testing the theory of its operation.

As indicated above, the Greenspan viscometer is rugged and prototypes are easily
constructed. The theory for the Greenspan viscometer contains corrections for the acoustic
flows near the ends of the ducts that are comparable in magnitude to the edge correctioﬁs
need for the oscillating-disk viscometer. A comparatively simple modification of the
present Greenspan viscometer will facilitate systematic studies of the effects of the flows at

the ends of the duct. Such a modification is shown in Fig. 8, top.
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Fig. 8, top shows a schematic drawing of a Greenspan viscometer with a removable
duct. We are constructing such an instrument as a convenient platform for systematically
testing the theory of "end" corrections that scale with rq/Lg. Furthermore, the approach
shown in Fig. 8 (top) is suitable for using very sophisticated cylinders as ducts. For
example, precision cylinders manufactured for use in dead-weight pressure gages are lapped
until their surfaces have scratches that are 50 nm or even finer. The deviations from
roundness and internal diameters of such high-quality cylinders can be determined to
several parts in 10°. Such a cylinder could be used as the duct of a Greenspan viscometer.
(The duct of an acoustic viscometer may have a diameter that is much larger than that of
the capillary tube used in unidirectional flow viscometers. This design flexibility exists
because the viscous dissipation in the acoustic viscometer occurs within a thin boundary
layer of thickness 6; surrounding the perimeter of the duct. In contrast, the dissipation in a
unidirectional flow viscometer occurs throughout the capillary.)

Finaliy, we mention three ways in which the concepts of differential metrology can be
applied to the Greenspan viscometer.

First, one can construct a Greenspan viscometer in which a solid rod, i.e. a piston,
partially fills a duct. Fig. 8, bottom shows the design of such a viscometer. In this design,
the gap between the rod and the duct is significantly larger than 6, everywhere, and the
rod can be supported in two or more configurations such that one end is within the duct
and the other end is within one of the chambers. One would measure the frequency
response of such a Greenspan viscometer when the rod occupies several different known
positions along the axis of the cylinder. The converging/diverging flow fields near the ends
of the duct and near the ends of the rod are unchanged upon displacing the rod axially;
thus, the effects of these difficult-to-model portions of the flow field will cancel out of the
difference measurements to a high degree. The differences could be more accurately related

to the viscosity than any single measurement.
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Second, one may use two acoustic detectors, one in V; and one in V,. (See Fig. 8,
bottom.) If the two detectors are sufficiently well-matched, neither one has to be
calibrated, and the results of the measurements are not subject to errors resulting from
imperfect modeling of the fill duct. One then measures a pressure ratio

(p1—p2)/ P2 = 20T La [(Zy + Zena) : - (19)
that still involves "end" corrections but otherwise is related simply to the viscosity.

Third, if there is a second source transducer located in V3 the roles of the two
detectors may be interchanged without moving either one. Thus, the degree to which they
are similar can be evaluated in situ and appropriate corrections can be made for their

differences.
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CAPTIONS FOR FIGURES
FIG. 1. Cross-section of Greenspan viscometer 1.

FIG.2  The viscous diffusivity Dy = 1/p as a function of pressure for the gases studied.
In some cases, data from several viscometers are superimposed.

FIG. 3. Top: The real (u) and imaginary (v) components of Vgetector/ Vsource 35 a
function of the excitation frequency. These representative data were taken with argon in
viscometer 1 at 295.9 K and 300.3 kPa. Bottom: Deviations of  and v from a fit of Eq. 18
to the data shown above. The fractional deviations from the fit are all less than 0.0005.

FIG. 4. Equivalent circuit of the Greenspan viscometer. The duct is represented by
the "T" equivalent circuit for a transmission line shown within the dashed box. The
T—parameters Zjand Z are defined in the text. The source ¢s drives the three parallel
impedances: (1) the cavity impedance Z, (2) the duct represented as an end impedance
Zend in series with the T—equivalent circuit, and (3) a parallel duct Z representing the fill
capillary.

FIG. 5. . Values of Dy = /p measured with viscometer 1 minus the values from the
literature for three gases as a function of éy/rq, the ratio (viscous penetration
length)/(radius of duct). The data for the three gases cluster about ADy/Dy = 0.01,
except for the data at the lowest pressures (4y/rq > 0.22) where the @s of the resonances
are smallest.

FIG. 6. Values of Dy = 7/p measured with viscometer 0 minus the values from the
literature for three gases as a function of §y/rq, the ratio (viscous penetration
length)/(radius of duct). The data for the three gases cluster about ADy/D, = 0.025.

FIG. 7. Deviations of the fitted resonance frequencies f, from those calculated from
Eq. (18). Top: Results from viscometer 0; bottom: results from viscometer 1.

FIG. 8. Top: Cross-section of Greenspan viscometer with removable duct. An
accurately characterized cylinder such as those used in dead-weight pressure gages could be
used as the duct. Bottom: Cross-section of Greenspan viscometer with a movable rod
partially inserted into the duct and with matched sources and detectors.
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1 INTRODUCTION 3

w 27w x frequency

P density of the gas

c speed of sound in the gas
k w/e

T4 duct radius

A=nrl cross-sectional area of duct
Ly duct length

V =mr?L, cavity volume (one cavity)
L, cavity length

Te cavity radius

Table 1: Notation

1 Introduction

An acoustic viscometer based on a double-Helmholtz resonator was described
by Greenspan and Wimenitz in 1953.> The geometry is defined in Fig. 1.

Lqg

A

Figure 1: Schematic representation of a Greenspan viscometer.

This report summarizes numerical calculations of the pressure and veloc-
ity fields in a Greenspan viscometer for the non-dissipative case. (Dissipative
effects are treated in Part II of this report.)

A theoretical model of the resonator for the non-dissipative case is useful
for defining terms and establishing the magnitudes of quantities. This model

!Martin Greenspan and Francis N. Wimenitz, An Acoustic Viscometer for Gases - I,
NBS Report 2658 (1953).




2 NUMERICAL CALCULATIONS 4

is extended further in a later section dealing with the effective length of the
duct. The duct has a series acoustic impedance equal to

Z.g = iwpLa/A. (1)

Each cavity has an acoustic impedance (in the low-frequency limit)

2
pc
Zy = —. 2
VTV @)
The input impedance of a duct terminated by a cavity is given by
Zin,d . Zv/Z() + 2tan ]{,‘Ld (3)
Zo 1+ (Zy/Zo)itankLy’

where Zy = pc/A is the characteristic impedance of the duct. The resonance
condition for the duct terminated by cavities at each end is

Zy + Zing = 0. (4)

This has a solution

2A kL AL
2 _ d d
k= VL, [tan kLy 2V J ()
which approximately equals
2A
2 _
ko - VLd (6)

in the limit of small kLy4. Note that Eq. (5) has two small correction terms.
The second is explicitly equal to the ratio of the duct volume to the to-
tal cavity volume. The other correction, from the ratio of the tangent to
its argument, is approximately (koL4)%/3 = 2AL4/3V, hence of the same
magnitude.

2 Numerical calculations

2.1 Boundary value problem

The acoustical modes of a rigid cavity are closely related to the solution of
the Neumann boundary-value problem for the Helmholtz equation. For a
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cavity C bound by a surface S the problem is defined by

(V2+EkH)®(x) =0, reC

n-Ve(r)=0, res, ™)

where n is the outward normal at r. An equivalent form of the same
boundary-value problem is the integral equation

o(r') Q') = ~/<I>(r) n-VG(' r)dsS, (8)

where r and r’ are both on .S, and Q(r’) is the solid angle subtended by S at
r’, and the fundamental solution, or Green’s function, is

G(r',r) = et R=|r-r'| (9)
] - R ] - .

The kernel of the integral equation (8) can be integrated over the azimuthal
coordinate ¢ for axisymmetric cavities. For such geometries the resulting
integral equation is one-dimensional. Solutions yield both the eigenvalue k
and the eigenfunction ® on the surface. Eigenfunctions can be calculated for
r within the cavity using Green’s formula and the surface values. However,
such calculations have not been carried out in this work.

Let the shape of an axisymmetric cavity be defined by the parametric
equations r(t), z(t) in cylindrical coordinates. The one-dimensional form of
Eq. (8) is

- Q") = /K(t’, t)®(¢)h(t) dt, (10)

where 9 5
K({t't)=rn.—G(', 21, 2) + rn,—G(r', 2'; 7, 2). (11)

or 0z

2.2 Numerical approximation and solution

A summary of the numerical method is presented in this section. The objec-
tive is to present sufficient detail so as to provide a context for interpreting
the numerical results. Details of the implementation will be published else-
where.
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The integral equation (10) can be approximated by the following proce-
dure. Divide the arc into /N intervals, where N is even. Let the jth interval
correspond to t;_; <t <t;, for j =1,2,...,N. The values of ®(t') at the
end points of the intervals then satisfy the exact equation

N/2

~Qu@(te) = / X () K (t:;, t)A(t) dt (12)

taj—2

for0 <i< N.

It is convenient to let the parameter ¢ vary from 0 to N, and to let the
length of each interval ;;; — ¢; equal unity, so that ¢; = 5. The integral in
Eq. (12) must be handled carefully when the range of integration includes the
logarithmic singularity at ¢’ = ¢. Atkinson? suggested the method of product
integration for weakly-singular kernels. For the interval 25 — 2 < ¢t < 27 let
the unknown eigenfunction be approximated by an interpolating polynomial

(t) ~ L(t — 27+ 1)(t — 25)®(25 — 2)
— (=27 +2)(t - 2)2(25 - 1) (13)
F -2 +2)(t - 25 + 1)®(2)).

The singular integrals in Eq. (12) can then be approximated by

/2j Q(t)K (t;, t)h(t) dt
252
2j
~ 1o(2 — 2)/ (t — 25 + 1)(t — 25) K (t;, )h(¢) dt
2=2 (14)

—3(2f — 1) /f (t = 25 + 2)(t — 2)) K (t;, £)h(t) dt

j—2
+%<5(2j)/2j (t—2j +2)(t — 25 + 1)K (t;, t)A(¢) dt.

25—2

2K. E. Atkinson, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the second kind, Society for Industrial and Applied Mathematics, Philadel-
phia, (1976) pp. 117-119.
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With this approximation for the integrals Eq. (12) becomes a system of
N + 1 linear equations in the N + 1 unknowns ®(i) = ®;. This system of
equations can be written in the vector form

W(k)3 = -3, (15)

where & is a vector with N+1 elements, W(k) is a square matrix of dimension
N+1,and R2isa diagonal matrix with the ii-element equal to the negative
of the interior angle subtended by the surface at point ¢. The eigenvalues are
determined by the condition that the determinant vanish:

(W (k) + £2| = 0. (16)

The eigenvalues can be determined from the linear equations once the eigen-
values are known. Rather than simply using the solutions of the linear e-
quations, refined estimates of the eigenfunctions were obtained by using the
power-method.?

In summary, the numerical technique yields estimates of the eigenvalues
k and associated eigenfunctions ¢ on the boundary. The eigenfunction rep-
resentation corresponds to piece-wise quadratic approximations on a mesh
of N/2 elements. On each element the eigenfunction has a quadratic rep-
resentation defined by the center and end values. The eigenfunctions are
continuous from one element to the next. The derivatives of the eigenfunc-
tion with respect to arc length are linear with the elements and in general
discontinuous on the boundaries between elements.

2.3 Viscometer shapes and mesh configurations

Calculations were carried out for the five viscometer shape configurations
shown in Fig. 2. A typical mesh configuration is defined in Fig. fig:viscometer1.
Because of the symmetry it is sufficient to define the mesh for a quarter of
the cross-section of-the viscometer.

Most calculations were carried out with the following mesh assignments:

3See, e.g. Germund Dahlquist and Ake Bjork, Numerical Methods, (Prentice-Hall,
Englewood Cliffs, N.J., 1974), Section 5.8.1.
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Figure 2: The five viscometer configurations used in numerical calculations
reported here. The viscometers have the same cavity radius r. and cavity
lengths equal to . (c), 27, (a, d, e) and 47, (b). The duct lengths equal . (d),
2r. (a, b, ¢), and 47, (e). Variable duct radii 74 in the range 0.02 < ry4/r. < 0.5
were studied.
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0 Ny Ng Ne
N3
N; N,

Figure 3: Mesh specification; the solid dots indicate node indices where the
mesh size changes. A typical choice used was N; = 40, N, = 120, N; = 160,
Ny = 220, N5 = 280, and Ns = 320. This choice gives higher resolution in
the region near the duct orifice.

j Nj Nj - N]‘_l 20h/7‘c
1] 40 40 0.5
21120 80 0.5

31| 160 40 0.45
4 | 220 60 1/60
51280 60 1/60
6 | 320 40 0.5

The mesh size h is specified in units of 7./20 for the case Ly = L, = 2r,.
Note that the mesh size is fairly uniform except for higher resolution regions
near the duct edge.

Geometries with rounded orifice edges were also studied. The shape was
modified as follows: In the cross-section of the orifice, the lines representing
the duct wall and the baffle surrounding the orifice were joined by a 90° arc
of radius 74/5. Ten half-elements from each of the fine-mesh strips adjacent
to the edge were assigned to the circular arc, so that the overall number of
elements remained the same.

2.4 Dependence of eigenvalues on mesh size

Solutions were found for two sets of grids for cavity configuration (a) of Fig. 2.
The total number of half-elements used was 320 for one case, distributed as
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described in the table of the previous section, and 160 for the second case.
The coarser mesh was obtained by halving the number of elements assigned
to each region. As summarized in Table 2, the eigenvalues are determined
with excellent accuracy for both mesh sizes. Further studies are advisable,
however, to investigate the effects of the distribution of mesh sizes on the
eigenvalues.

Unless otherwise noted, all results in this report were calculated with
N = 320 half-elements.

Ta/Tc | k/ko (N =160) | k/ky (N = 320) | % difference
0.05 0.980429 0.980407 0.002
0.10 0.962569 0.962548 0.002
0.15 0.946249 0.946231 0.002
0.20 0.931278 0.931263 0.002
0.25 0.917469 0.917456 0.001
0.30 0.904647 0.904636 0.001
0.35 0.892642 0.892632 0.001
0.40 0.881292 0.881283 0.001
0.45 0.870439 0.870431 0.0009
0.50 0.859927 0.859920 0.0008

Table 2: Calculations with configuration (a): L. = Ly = 27, and r4 variable:
carried out with the total number of half-elements equal to 160 and 320,
distributed as described in the text.
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2.5 Eigenfunctions

The eigenfunctions for five values of 4 for the configuration (a) with N = 320
are shown in Fig. 4. (The eigenfunctions have been normalized to unity at
maximum.) For the smallest duct radius the eigenfunction is nearly constant
in the cavity, with a sharp transition to a linear region within the duct.
As the duct radius is increased greater variation is seen within the cavity.
Similar curves were observed for all geometries. Detailed comparisons of
the eigenfunctions in the cavities and theory are presented in Part II of this
report.

3 Velocity near orifice

The acoustic velocity field near the orifice is of great interest. The eigenfunc-
tions can be interpreted as velocity potentials, so that the tangential velocity
fields equal the derivatives of the eigenfunctions as functions of arc length.
Figure 5 shows the derivative near the orifice of a configuration (a) resonator
with 74/r. = 1/20. The figure shows plots for two shapes. The “sharp-edge”
case is the standard N = 320 configuration (a). This plot has the expected
cusp at the edge. The second plot corresponds to a rounded orifice. The nu-
merical results indicate that the velocity cusp is smoothed by this procedure.
Similar smoothing was obtained when the radius of curvature of the arc was
reduced to r4/10.

The smooth line in Fig. 5 has the expected theoretical form for solutions
of the Helmholtz equation in two-dimensions near a 90° corner. Assume, for
example, that a solid wall extends along the positive z-axis and the negative
y-axis. Solutions expanded about the origin have the form

®(r,0) = Z A Jom3(kr)e?mol3, (17)

m=1

The exponents of the angular function here are required to have a fractional
form in order to satisfy a Neumann boundary condition on the surfaces § = 0
and § = 37/2; from the separation of variables the same fractions must
equal the orders of the Bessel functions. The leading term of the lowest-
order Bessel function is proportional to (k7)%/3. Here the polar coordinate
T corresponds to the magnitude of the arc length s measured from the edge
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1.0

: |
|

0.0
0 Te re + L,

arc length

Figure 4: Eigenfurctions for viscometer configuration (a), computed with
320 half-elements and values of ry/7. equal to 0.02, 0.1, 0.2, 0.3, 0.4, and
0.5, corresponding to the curves from top to bottom. The eigenfunctions
are normalized to unity at maximum, and plotted as a function of arc length
within the cross-section of the viscometer, starting from 0 at the center of the
cavity, to 7. at the rear edge, increasing by the cavity length L, to the front
corner, then increasing by 7.—74 to the duct orifice. The latter position varies
with the curves and is not indicated. The right linear portions correspond
to approximately uniform acoustic velocity within the duct.
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—0.05

d’ —0.10

-0.15| .

(eJe]

—0.20 . . '
-1.0 -0.5 0.0 0.5 1.0

fractional arc length s/ry

Figure 5: Numerical derivatives of the eigenfunction with respect to arc
length, plotted in arc-length units relative to the duct edge. The smooth
curves were separate fits to the s > 0 and s < 0 data with the form A +
B|s|~!/3. The points are for ducts with sharp edges (o) and ducts with edges
rounded to 74/5 (x). The abscissae are measured from the orifice edge in
the case when the latter is sharp, and from the mid-point of the arc in the
rounded case. The latter convention is somewhat arbitrary and affects the
position of the minimum in the figure.

of the orifice. Thus the eigenfunctions near the edge are expected to have a
term proportional to |s|?/%, and &' is accordingly expected to have a singular
term proportional to |s|~/%. The smooth curve in the figure was obtained
by separate fits to the form

¥'(s) = A+ Bls|™* (18)

for the regions within the duct and on the baffle. The numerical calculations
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clearly show that a cusp is present, but confined to a region within a small
fraction of r4 from the edge.

4 Viscous losses

Dissipative effects have not been included in the numerical model present-
ed here. However, some inferences can be drawn from the behavior of the
computed eigenfunctions. Viscous losses on a surface are proportional to the
square of the tangential velocity at the surface as long as the viscous pene-
tration length is small compared with other dimensions, e.g. the duct radius.
Thus the ratio of the surface integrals

fbaﬁie ©,2 dS . fT;Td (DIZT d’f’

fduct o2 dS N fz[:()/2 @Izrd dz

(19)

is an estimate of the relative importance of losses on the baffle surrounding
the orifice to losses within the duct. These quantities can be evaluated nu-
merically. Somewhat arbitrarily, the “edge” of the orifice for the rounded
case has been defined to be the 45° point on the arc. With this definition,
the ratios determined with sharp and rounded orifices are very consistent, as
shown in Fig. 6. Both sets of data are approximately linear in ry /L4 with a
slope of approximately 0.4. 4

“Later work revealed that there is an approximately equal contributionto the orifice
resistance from the region just inside the duct. The total orifice resistance is thus approx-
imately double the amount shown in the figure. (JBM, 23 March 1995).
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15

0.06 -

Loss ratio 0.04

0.02

0.00
0.00

0.05 0.10
r4/Lqg

0.15

0.20

Figure 6: Ratio of viscous losses on baffle to those in duct as determined
by numerical integration for orifices with sharp and rounded edges. The
line has a slope of 0.793, an approximate fit to the sharp-edge data. The
symbols correspond-to numerical results for sharp-edged orifices with cavity
dimensions: L, = Lq = 27, (®); L. = 7., Lq = 2. (+); L, = 4r,, Lq = 2r,
(x); Le = 2r¢, Lg = 4r (0); L. = 27, Ly = 7. (¢). Rounded-edge orifice
calculations were only carried out for the case L. = Ly = 2r, (%)
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5 Mass end corrections

It is conventional to correct the lengths of ducts by a “mass end correction” §
to account for the inertial effects of the fluid just outside the orifice. Frequent-
ly the theoretical value § = 8r,/3w, valid for radiation into a semi-infinite
space from a duct with an infinite baffle, is also used for ducts terminating
in cavities. Ingard’s® extensive theoretical and experimental investigation of
Helmholtz resonators includes a calculation of the “internal” mass end cor-
rection é; for a duct terminated by a cavity. This calculation is reconsidered
in Part IT of this report. Ingard’s calculations showed that &;/ry approx-
imately equals 8/37 for small r4/r., and decreases approximately linearly
with increasing 74/7.. The present numerical calculations provide a means
of testing the accuracy of Ingard’s calculations.

An accurate comparison requires a careful analysis of the viscometer res-
onances. In Part II of this report it is shown that the input impedance of
the cavities can be written, for the non-dissipative case, as

pct kL, iwp

Zeavity = — —50;. 20
YT wV tankL, | wrl (20)

An improved resonance condition is obtained by replacing the cavity
impedance Zy in Eqgs. (3) and (4) by Zcavity. The mass end-corrections can
be calculated from numerical values of k/ky and this resonance condition.
To obtain acceptable accuracy it is necessary to do this calculation carefully.
Note that the tangent correction to the volume compliance term, when ex-
panded to second order in kL., has the same order of magnitude as the mass
end correction. Figure 7 shows results computed for the five resonator con-
figurations. The numerical data overlap for small r4/r, and diverge slightly
for larger ducts. The smooth line represents the theoretical values based on
Ingard’s theory. The theoretical values depend only weakly on cavity dimen-
sions other than ry4/7; the differences are invisible in the graph. Figure 8
shows the difference between the theoretical and numerical values of §; /T4
The theoretical values are all high by amounts which which lie in the range
0.02-0.03, varying weakly with ry/r..

The difference between the theoretical and numerical values of 6;/r4 for
may be due to the assumption of a uniform velocity within the duct orifice.

K. Ingard, J. Acoust. Soc. Am., 25, 1037-1061 (1953).
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Ingard,® referring to his experimental values of §;/74, commented: “The mea-
sured values are consistently somewhat smaller than the calculated. This is
expected from the fact that any assumed velocity distribution different from
the correct one gives an end correction which is always too big.”

An improved theory of the viscometer could yield the theoretical velocity
distribution in the orifice. Alternatively, the BIE numerical technique could
be extended to calculate the velocity distribution in the orifice.” Either ap-
proach would probably be of little use in understanding practical viscometers,
however, because the viscous effects on the velocity in the duct are likely to
be much greater.

Sop. cit.

"Subsequent to the original completion of this report, numerical calculations of the
the z-component of the acoustic velocity in the orifice were made. The results show the
expected singular behavior near the orifice edge. In future work this numerical velocity
field will be used together with analytic expressions for the fields in the cavity to obtain
improved estimates of the inertial end corrections. (JBM, 29 January 1995)
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0.2 ' ' '
0.0 0.1 0.2 0.3 0.4 0.5

T’d/’l"c

Figure 7: Mass end corrections for duct connected to cavity. The open
symbols correspond to numerical results for all five cavities; small differences
between the cavities cannot be differentiated on the scale of the graph either
in the calculated lire nor the numerical results. The lower line is a best fit
to the numerical results, with an intercept 0.817 & 0.003 and slope —1.053 +
0.005.
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Figure 8: Mass end corrections for duct connected to cavity, plotted as theory
minus numerical calculations. The symbols correspond to numerical results
for all five cavities; small differences between the cavities cannot be differen-
tiated on the scale of the graph.
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6 Summary

The important numerical results of this work are:

o The ratio of viscous losses on the baffle around the duct orifice to losses
within the duct has been calculated for both sharp and rounded edge
orifices. Both sets of results are approximately described by a linear

relationship
loss ratio & 0.7974/Lg.

e The Ingard mass end correction has been shown to be higher than
numerical values by an amount in the range 0.02-0.03. The difference,
which depends weakly on the ratio of the duct radius to the cavity
radius, may be due to Ingard’s (and Rayleigh’s) approximation of the
field in the duct orifice as uniform (piston).
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Abstract

An acoustic viscometer based on a double-Helmholtz resonator was
described by Greenspan and Wimenitz in 1953.1 This report describes
new theoretical results for interpretation of measurements with this
type of resonator, for which the name Greenspan viscometer has been
proposed. A Green’s function formalism has been used to calculate
the pressure and velocity fields in the viscometer cavities. The fields
are shown to be in excellent agreement with numerical calculations.
The input impedance of the cavity was calculated and shown to equal
the sum of a volume compliance term and a mass end correction. The
effects of viscous and thermal boundary layer effects on these terms
was calculated.
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1 Introduction

The geometry is defined in Fig. 1. The theory of the viscometer is described

Ly

A

Figure 1: Schematic representation of a Greenspan viscometer.

by first presenting a simple model to introduce notation and characteristic
dimensions. Subsequent sections deal separately with better models of the
flow in the coupling duct and the cavities. A final section updates the theory
of viscometer resonances. Table 1 summarizes the notation.

In the lowest order of approximation the duct can be treated as a uniform-
ly moving mass of gas with an acoustic impedance equal to the product of iw
and the mass per unit cross-sectional duct area of the gas: Z, = iwpLy/A.
Each cavity has an acoustic impedance Zy = pc?/(iwV). A resonance condi-
tion is obtained by setting the total series impedance of the viscometer equal
to zero

2Zyv + Za = 2pc*/(iwV) +iwpLy/A = 0. (1)
The resonances occur at w = ckg, where
2A 272
2 __ _ d
ko = VL, r2L.Ly (2)

Under typical conditions the duct radius is much smaller than the other
dimensions, so that products like kor., koL, and koL4 are small compared
with unity.

2 Acoustic flow in ducts

A more complete account of the acoustic flow in the duct is based on the
fourth-order partial differential equation for the temperature introduced by
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w 27 x frequency

p density of the gas

c speed of sound in the gas

Cp, Cy specific heats per unit mass of gas
v=Cp/Cy specific heat ratio

n viscosity of the gas

K thermal conductivity of the gas
6y = /n/p viscous penetration length

8¢ = y/k/pCp thermal penetration length

T4 duct radius

A=7r? cross-sectional area of duct

Ly length of duct

V =nxriL, cavity volume (one cavity)

L. cavity length

Te cavity radius

S surface area of cavity

Table 1: Notation

Kirchhoff.? It is convenient to use the equivalent circuit parameters Z and
Y, and the related propagation parameter I' and characteristic impedance
Z,. These quantities are defined in the literature.? The series impedance Z
and shunt admittance Y equal

_wp 1 _wA B
= A1 E Yy = —pc2 1+ (y—1)F, (3)
where the functions F, and F; are defined to be
2J1(€)
F = ) 4
Q) @

2G. Kirchhoff, Uber den Einfluss der Warmeleitung in einem Gase auf die Schallbewe-
gung, Ann. Physik Chem. (Fifth Ser.), 134:177-193, 1868; English translation “On the
Influence of Heat Conduction in a Gas on Sound Propagation,” by R. B. Lindsay in Bench-
mark Papers in Acoustics: Physical Acoustics, R. B. Lindsay, Ed., Dowden, Hutchinson,
& Ross, Stroudsburg, Pennsylvania (1974), pp. 7-19.

3For a recent review see Douglas H. Keefe, J. Acoust. Soc. Am. 75, 58-62 (1984).
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Here ¢ = (1 —1)rq/6, for F, and (1 —1)ry/6; for F}, and Jy and J; are Bessel
functions. For small values of §,/r; the approximations

F, = (6,/ra)(1 —1), Fy=~(8/ra)(1 —1) (5)
are adequate.
The characteristic impedance Zy and propagation parameter I" for acous-
tic flow in the duct are

Zoz\/—/_“ .

AVA-F)1+(y-1F]

+ (- 1DF

= ,—_zw I*F

The relations
Z=272¢I' and Y=1T/Z (7)

are also useful.

3 Acoustic cavity coupled to duct

Consider a cylindrical cavity of radius 7. and length L. concentric with a
cylindrical coordinate system. Let the cavity be coupled to a circular duct
of radius r4 in the z = 0 plane. The objective of this section is calculation
of the pressure and velocity fields in the cavity, and the acoustic impedance
of the duct orifice, when the cavity is excited by acoustic flow in the duct.

3.1 Formal solution

Let the cavity C be bound by a rigid surface S. Consider the Green’s function
describing non-dissipative acoustic fields

: Oy (r)2n(r')
G(r,r):}]\;VAN(k?V_kz), (8)

where k = w/c. The eigenfunctions &y are a complete orthogonal set satis-
fying
(V2 +Ek3)0n(r) =0, reC

(9)
Q(g’_"_:o’ res,
on
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where C' represents the cavity bound by a surface S. The Green’s function
satisfies
(VE+E)G(r,r) = =6(r - 1), reC
8G (10)
— =0, res.
on
The acoustic pressure in the cavity is assumed to satisfy

(V2+Ek)p(r) =0, reC

Op , (11)
— = —lwpl,, TrES,

on

where u, is the outward velocity of the surface at r, assumed to be zero
everywhere except over the duct orifice, where it will be approximated by a
constant value —uy. The acoustic pressure can be expressed in terms of the
Green’s function as

p(r') = iwpuo/ G(r,r')dS. (12)

orifice

This integral will vanish for all modes @y except the radially symmetric ones
given by

@, = Jo(20n7/7c) cOS(Imz/ L), (13)
where 2y, is the nth root of Jj(2) = —J;(2) = 0. The normalization integral
is

VAn[ = WT?LC[JO(ZOn)]Z/Gl (14)
where € = 2 — 09 is the Neumann symbol and the eigenvalues are
k% = (zon/7e)* + (Im/ L)% (15)

The integral needed for the pressure is
T4
/ Jo(2onT/Te) 2707 dr = 27w J1 (2007 a/Te)TaTe ] Zom, (16)
0

where 74 is the duct radius. The pressure in the cavity is thus

p(r,2) = 2iwpugry J1(zonTa/7c) Jo(2zont [Te) cos(lmz/ L)€
| Lere % 2on[Jo(20n)]*[(20n /7c)? + (I / Lc)? — k2]

(17)
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3.2 Pressure and velocity fields

Expressions for the pressure and velocity fields in the region surrounding
the orifice and along the cylindrical walls are useful for comparison with
numerical calculations. It is convenient to separate off the contribution of
the On-modes in Eq. (17), for which the Bessel terms should be replaced by
the limiting forms

lim Jl(grd/'rc)Jo(CT/Tc) — Td
VA6 T

(18)

In convenient dimension-less units, the pressure is thus

p(r,z) _ ikr] Z € cos(l7rz/L
pcug  Ler? (Ir/L.)?

¢ 1=0

o0

+ 2ikrg o= Ji(20nTa/Te) Jo(ZonT/Te) Z e cos(lrz/L,)
Lc’l"c zOn[JO(ZOn ]2 (Zgn/’f'c ~+ (l’ﬂ'/L ) k2] |
(19)

n=1 =0

The sums over [ can be evaluated in closed form using*

=, ¢ cos(pl) _ wcoshla(r — f)]

2+a®*  asinh(ra) (20)

=0

For the first sum a = ikL./7 and f = wz/L,, so that

= L TN, = —Le——7=. 21
(ir/Le)? — k? ik sinh(ikL.) ksinkL. (1)

i lcos(lwz/L ) _ cosh[tkL.(1 — z/L.)] cos k(L. — z)
1=0

In the second sum a = (zonLc/77. )05, where 1, = /1 — (kr./20,)? = 1, and

B is unchanged. The sum is

= e cos(irz/Le) _ . cosh[zgana(Le — 2)/1]
Z [(zon/Te)? + (Im/L.)? — K2} Lcrczo,mn sinh(2gnMnLe/7e) (22)

4V. Mangulis, Handbook of Series for Scientists and Engineers, Academic (1965),
pp. 99-100; Eldon Hansen, A table of series and products, Prentice-Hall (1975), p. 243.
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The pressure simplifies to

p(r,z) —iﬁ cos k(L. — z)

pcug  TZ  sinkL,
(23)
t 2ikry Z J1(zonTa/Tc)Jo(zonT[Tc) cOsSh(zontn(Le — 2) /7]
n=1 [ZOTLJO (ZOn)]2 M Slnh(ZOnnnLc/Tc)
The pressure on the z = 0 surface is
p(r,0) _ ir] + 2ikry Z Ji(zonTa/7c) Jo(20nT [Tc) cOth[(20n7n Le /Tc)
pCo r2tan kL, — [20nJ0(20n)]? N
(24)

For values of k£ near kg the quantity 7, is on the order of 1 — 2r2/(L.Ly2%)),
which typically differs from unity by a negligible amount. Noting further
that zg; ~ 3.83 and that tanh(3.83) = 0.999, the hyperbolic cotangent term
can generally be approximated by unity for cavities with L. > 7.. In the
limit where both 7, and the hyperbolic cotangent are approximated by unity
the sum in Eq. (24) is independent of k. While in practice there is no need to
make the approximation in computer calculations, the calculations reported
here the approximations are excellent in nearly all cases. The simplified
expression for the pressure is

p(T, O) Z’I"Z Jl zOan/TC)JO(ZOnT/Tc)
by ritankL, ””"‘12 od o)

The radial velocity at z =0 is

u.(r,0) _ 7 ?2 _ 274 i J1(zonTa/7e)J1(20nT /Te) (26)
Ug ,OCk'll,() 87‘ Te nel ZOn[JO(zOn)]2 ’

The pressure along the cavity sides is (in the same limits)

p(re,2) zrd cos k(L + Sikr dz Ji( zOnrd/rc ) cosh[zon (Le — z)/rc].
2. Jo(zon) sinh(zgn Le/Te)
(27)

pcug 7"2 "~ sinkL.

The tangential velocity along the edge is thus
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U (re,2) ﬁsin k(Lc—2) | 214 N J1(20n7a/7e) sinh (20, (Le — 2) /7]

Ug - TZ sin k‘Lc Te el ZonJ()(Zon) Sinh(Z()nLc/’f‘c)

(28)

3.3 Numerical tests

It is useful to compare the theoretical representation of the fields described
here with the BIE numerical results. Except when noted otherwise, all nu-
merical results will refer to cavities with r4/r, = 1/20, and Ly = L, = 2r,.
Numerical calculations were carried out for duct orifices with sharp edges and
with rounded edges. Consider the cross-section where the duct intersects the
cavity. The rounding corresponds to a 90° circular arc connecting the duct
wall with the plane cavity wall. The results referred to here correspond to
an arc radius equal to 74/5. (Similar results were obtained with other arc
sizes.)

The numerical calculations yield values of the velocity potential ® on the
cavity boundary. These values permit the velocity potential to be determined
within the cavity as well. However, such calculations will not be described
here. In addition to the velocity potential it is possible to obtain the veloc-
ity by numerical differentiation. A convenient dimension-less ratio for the
pressure is the quantity k®/®; = —p/(ipcu,), where ®, the derivative in
the duct, corresponds to the source velocity ug. The numerical calculations
show that @' is vary accurately linear in the axial displacement from the duct
center, except for deviations near the orifice. (Because of the symmetry of
the calculated models, and the emphasis in this section on a single cavity,
the singular will be used to refer to the cavity, the orifice, etc.) For both the
sharp-edged and rounded orifices, over 95% of the duct length the agreement
of ® with the best lines through the origin is better than 0.01%; near the
orifice the departures from linearity remain less than 0.8%. Thus reasonably
well-defined values” of ®; can be obtained from these fits. Figure 2 shows
the acoustic pressure on the cavity wall at the orifice. The numerical results
agree very well with calculations, except that both the sharp- and rounded-
edge numerical data fall slightly (about 0.05%) below the theoretical curves.
This is within the range of variation of @’ in the duct, and may be related to
the non-uniformity of the source velocity within the orifice. Figure 3 shows




3 ACOUSTIC CAVITY COUPLED TO DUCT 10

0.036

ip
ockug

0.035

! I I I
0.0 0.2 04 0.6 0.8 1.0

/T,

Figure 2: Pressure field at the “bafle” end of a cylindrical cavity with a
radius 7, as a function of the fractional radial coordinate r/7.. The smooth
line was calculated for a uniform source of velocity ug in the range r < 7y,
with r4/r. = 0.05. The discrete points are for numerical calculations of the
field in a Greenspan viscometer with a cavity length L, = 2r, and a duct
orifice with (o) sharp edges, and (x) edges rounded to a radius of curvature
7¢/5. The numerical data fall about 0.05% below the calculated curve for
larger values of r/r.. This may be due to the choice of ®} used in the analysis
or to the assumption of a uniform source velocity.




3 ACOUSTIC CAVITY COUPLED TO DUCT 11

that the numerical and theoretical values of the radial velocity u.(r,0) agree
over nearly five orders of magnitude. Little difference is seen between the
results for sharp and rounded edges.

Greater insight is obtained by considering a model based on the assump-
tion of radial flow at moderate distances from the orifice. The volume flux
at the orifice is 7r3ug. A transition to approximate radial flow over a length
scale on the order of 4 is a plausible assumption, as suggested by Moldover.5
For radial flow into a solid angle 27 the expected velocity is uer3/(2r?). As
a test of this hypothesis the quantity 2u,72/(uor2) is plotted in Fig. 4. Small
differences between the sharp- and rounded-edge cases can be observed just
outside the orifice (at 74/7. = 0.05); a transition to radial low occurs within
one or two duct radii of the orifice. Eventually the velocity goes to zero to
satisfy the boundary condition at r = r..

Finally, Figs. 5 and 6 show that the numerical and calculated pressure
and velocity fields agree along the cylinder wall. In summary, noting that
there are no free parameters in the comparisons of the pressure and velocity
fields in the cavity, one can conclude that the theory described in this section
gives an excellent account of the cavity behavior.

5Michael R. Moldover, private communication.
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Figure 3: Radial velocity fields on the “baflle” end of a cylindrical cavity
with a radius r. as a function of the fractional radial coordinate r/r.. The
smooth line was calculated for a uniform source of velocity uo in the range
r < rq, with 74/7. = 0.05. The discrete points are for numerical calculations
of the fields in Greenspan viscometers with cavities of length L. = 27.: o,
duct orifice with sharp edge; +, duct orifice with edges rounded to a radius
of curvature r4/5.
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Figure 4: Radial velocity fields on the “baffle” end of a cylindrical cavity with
a radius 7., weighted by a factor 2(r/r4)%/uo, as a function of the fractional
radial coordinate r/r.. The smooth line was calculated for a uniform source
of velocity ug in the range r < 74, with 74/, = 0.05. The discrete points
are for numerical calculations of the fields in Greenspan viscometers with
cavities of length L. = 2r.: o, duct orifice with sharp edge; +, duct orifice
with edges rounded to a radius of curvature r, /5.
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Figure 5: Pressure field on the cylindrical surface 7 = 7. of a cavity as
a function of the fractional axial coordinate z/L.. The smooth line was
calculated for a uniform source of velocity uy in the range r < 74, with
r4/T. = 0.05. The discrete points are for numerical calculations of the fields
in a Greenspan viscometer with a cavity length L. = 27, cavities of length
L, = 2r.: o, duct orifice with sharp edge; X, duct orifice with edges rounded
to a radius of curvature r,;/5. As in Fig. 2, the numerical data fall about
0.05% below the calculated lines.
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Figure 6: Axial velocity fields on the surface r = 7, of a cylindrical cavity of
radius r. as a function of the fractional coordinate z/L.. The smooth line was
calculated for a uniform source of velocity ug at 2 = 0 in the range 7 < 7y,
with r4/7. = 0.05. The discrete points are for numerical calculations of the
fields in Greenspan viscometers with cavities of length L, = 2r.: o, duct
orifice with sharp edge; x, duct orifice with edges rounded to a radius of cur-
vature 74/5. Note that the maximum velocity is relatively small, comparable
with the value of u, in 0.75r. <7 < r,.
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3.4 Cavity input impedance

The input impedance of the cavity is important for modeling the viscometer.
The mean pressure at the orifice is given by

p 1 "
= 5 p(r,0)27r dr
pcuy  pcuemrs J

e 2
= __Z_Z_____ + 47;ch Z ‘]l (ZORTd/Tc) COth[(ZOn’I’,nL/TC)
ir2tan kL, 2onJo(20n) "

(29)

The acoustic input impedance of the cavity (pressure/volume velocity) is

Zi, = 12)
_ pc 4 4ipCl€7'C i Jl (ZOan/'rc) 2 COth[(ZOnT)nL/TC) (30)
inr?tan kL, w1y = | 20nJo(20n) Tn .
The first term is 2 L
Z(n:O) __pc c (31)

7 4wV tankL,
equal to the zero-order expression for the input impedance of the cavity
modified by a frequency-dependent factor

kL./tan(kL.) =1~ (kL.)*/3 4+ O(kL.)". - (32)

Following Ingard,® the other terms in the sum can be interpreted in terms
of an effective specific acoustic inertance iwpé;, where §; is an effective length
correction for a duct terminated by the cavity, .e. an internal end correction,
given by

; = dr, i [Jl(z"””/ TC)] " cothl(eantn L) (33)

— 2onJo(20n) Nn

This differs from Ingard’s expression only in the hyperbolic cotangent and
7. factors. As noted previously, the hyperbolic cotangent function is already
nearly unity for the n = 1 term, and 7, = 1 to a very high degree of accuracy.
Thus the two expressions are in practice nearly identical.

5Uno Ingard, “On the Theory and Design of Acoustic Resonators,” J. Acoust. Soc.
Am., 25 1037-1061 (1953).
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The separation of the cavity impedance into a compliance term and an
effective mass term is not unique. For example, the first correction term
Eq. (32) has the same frequency signature as a constant effective mass term.
However, the chosen formulation has the advantage of the correct limiting
behavior as r4 — 7.

3.5 Dissipative effects

Dissipative effects owing to the viscous and thermal boundary layers in the
cavity can be included by using the Green’s function satisfying viscothermal
boundary conditions.

The perturbed eigenfunctions and eigenvalues can be written

U, = Jo(gnr) cos(kyz + 6)), k2 =g + K7, (34)

where ¢, ki, and 6, are complex parameters determined by the boundary
condition
oV,

on
According to viscothermal boundary-layer theory, the specific acoustic impedance
ratio [ satisfies

= —ikBV,. (35)

2tk = (=1 +9)k*[(v = 1) + (k7 /k*)6,), (36)

where k7 is the transverse component of k,; for the mode under consideration,
i.e. k} = -V, /¥, Appropriate expressions for the cylindrical sides and
plane ends of the cavity are

2ikPsiqe = (=1 +1)[(y — 1)k%6; + (Im/L)?6,)

. . ) ) (37)
21k Benas = (=1 + 0)[(7 — 1)k*6¢ + (20n/7¢)*64)-
Approximate solutions for the eigenvalues components are
g5 = 2ikBsiae/Te
» ik
dn = ilrg" + _Z—“:Bside, n=>1
c on
38
K'g = 2ikﬁends/Lc ( )
l 2tk
Ky = l + _Z_,Bends, [>1.

L. I«
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Also, the phase constant §; equals —ikfengs/%1- a result useful in demonstrat-
ing that the normalization of the eigenfunctions is not altered to first order

in S.
The following abbreviations will be useful in expressions for the perturbed
eigenvalues:

X1 = (_1 + i)5v/Tc, X3 = (—1 + 7’)(’7 - 1)5t/’ra
X2 = (—1 + i)év/Lm X4 = (_1 + 7’)(7 - 1)6t/Lc-

In this notation, the following are correct to order x?, where O(x?) means
any combination of products of the x;:

ko = k*(x3 + X4)

ki = (Im/Le)* (1 + x1) + k*(x3 + 2xa)

kon = (20n/7c)* (14 x2) + k*(x3 + Xa)

ki = (Im/Le)’ (1 + x1) + (20n/7e)*(1 4 2x2) + £* (X3 + 2x4)-

A generalized expression for the input impedance requires the square of
the integral of the eigenfunction over the duct orifice

(39)

(40)

Td
27r/ Jo(gur)r dr = 277r4J1(qnTa)/ Gn- (41)
0
The input impedance is thus
diwp Ji(gra) 17 @
Zin = . : 42
777'¢21L nl [Qn”'cJO(ZOn) k?u — k2 (42)

In the non-dissipative case the quantity ¢, equals zy,/r. and the sum over !
yielded an additional factor of 2y, in the denominator, so that the convergence
was governed by a factor

ZOnJO(Zon) ZOTn.

Numerical investigation shows that the sum is dominated by terms for which
2onTa/Te < /2. For the dissipative case, the series expansion

241 . ¢ s
c —1—§+O(g) (43)

[Jl (%M‘d/%)} 1
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shows that this term is insensitive to the approximation ¢, = 2y,/7. in this
range. Accordingly, this approximation will be made within the square brack-
ets. The main effects of dissipation come from the perturbation of the eigen-
value term in the denominator.

3.6 Complex effective volume

Consider the contributions of the On modes to the input impedance

Z(=0) _ b @ (44)
mriLe < ki — K
Evaluation of the sum yields
Z(n=0) _ pc’ s 1 kLey/(1 = x3 — 2x4) /(1 + x1)
- wV 1 — X3 — 2x4 tanfkLe/(1 — x3 — 2x4)/(1 + x1)]
2 2
pc 1 (kL) 4 2 ]
_ - +O(kL) +0
wV [I“Xs—X4 3(1+x1) (EL.) &9
2 .
pc iwpL, 4 2
= O(kL. )
wv T 3nr2(1+ x1) T O(kL)" +0(¢)
(45)

Here the complex volume V equals V + (1 — i)(y — 1)6;5/2, a result in
agreement with prior calculations. The next correction term is shown here in
a form which more explicitly suggests its interpretation as an effective length
correction, now corrected by the viscous term y;

3.7 Complex length correction

The effects of thermal and viscous corrections to the eigenvalues on the modes
with » > 1 can be included in the formalism by introducing a complex
effective length cofrection

4 & Jl(Zoan/Tc)]2 — €
6 = — S | LlFonTa/Te) e 46
Lc nzzl [ zOnJO(ZOn) ; k,,zll — kZ ( )
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Evaluation of the sum yields

5, = dr Z [Jl ZonTd/Te) } coth(zonLc/7¢) L T (47)
—1 zOnJO(ZOn Zon\/(l + Xl)(l + 2X2) ZgnLc

where terms of order (kr.)? and x? have been dropped, and all corrections
to the argument of the hyperbolic cotangent have been dropped. The ma-
jor effect is that the previous expression for §; is multiplied by a factor of

approximately (1 — x1/2 — x2):

5, 6 Ar2(=1 4 3)6, = [J1(20n7a/7e) ]
(5.,; = 0; — (-1 ] = - £
’ [1 (F1+4) (27”c " Lcﬂ i L ; 24 Jo(20n)
(48)
Here the second term has been simplified by the usual approximations. Ow-

ing to the additional zp, in the denominator, it will converge much more
rapidly than the series for é;.

The imaginary terms correspond to a specific acoustic resistance of the
orifice equal to the product of the imaginary part of §; and pw. The effect on
the imaginary part of the resonance frequency may be estimated by noting
that the mass end correction alters the frequency by a fraction 6;/L4. For
small duct radii the real part of é; is approximately 8r4/37. The fractional
eigenfrequency due to the imaginary part is thus

Ag 8 Td by by
fo 3L, (2_72 * Z:) . (49)

This is a much smaller correction than those estimated numerically in Part
I. Further work is required to clear this up.

4 Acoustic model of the viscometer

The formalism of the last section shows that the resonator input impedance
can be written in-the form

pc? 1wpL,

Lcavity = -
YT WV T 30r2(1 + x1)

+ 2B+ O(L)2 + O(x?),  (50)
s

the length correction term implicitly including the orifice equivalent resis-
tance. For brevity in further development it will be convenient to group the
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second term with a redefined effective length 8;, so that the cavity impedance

1S
2 2 4
pc k*Vé;
anvity = iwV {1 - A ] . (51)

The viscometer consists of a duct terminated at each end by a cavity.
The impedance at one end of the duct due to the load Z ., at the other
end is given by the transmission line equation as

Zduct _ anvity/ZO + tanh(FLd)
ZO 1+ (anvity/zo) tanh(FLd) ‘

(52)

The resonance condition is that the sum of the impedances of the left cavity
and the input impedance of the duct coupled to the cavity should be zero:

anvity + Zgyet = 0. (53)
This is equivalent to
2an.vi Zgavi
S (14 ==Y ) tanh (I'Ly) = 0, (54)

or more conveniently, to

2anvity + t&l’lh (FLd) <1 + ZZa.vity)

ZL I'L, Z2

(55)

These equations provide a theoretical basis for calculating the resonance
frequencies of the Greenspan viscometer.
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5 Summary

The major result of this report are the following:

e The pressure and velocity fields within the cavities of the Greenspan
resonator have been calculated theoretically. The calculations are in
excellent agreement with the numerical results reported in Part I. Thus
either theoretical or numerical calculations can be used with confidence
in calculating viscous and thermal losses in the cavities.

e The cavity input impedance has been calculated. The results can be
described as the sum of a volume compliance term and a mass end
correction term. The volume compliance must be calculated carefully
in order to include effects of the same order of magnitude as the mass
end correction.

e Viscous and thermal boundary-layer effects were introduced into the
formalism. The modification of the volume compliance due to thermal
terms agrees exactly with simpler models. The calculation of viscous
effects are inconclusive; further work is needed to clarify the results.
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w 27 x frequency

P density of the gas

c speed of sound in the gas
k wfe

T4 duct radius

A=rrl cross-sectional area of duct
L4 duct length

V =nrlL. cavity volume (one cavity)
L. cavity length

Te cavity radius

Table 1: Notation
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1 Introduction

Consider an acoustic cavity resonator consisting of two cylindrical sections,
each of length L., coupled by an array of circular ducts of length L;. A simple
geometric model for the duct array is a solid metal block drilled through by
an array of circular holes. The density of holes is limited in the practical case
to the “close-packed” configurations. Somewhat higher hole cross-sectional
areas can be obtained by using close-packed hexagonal ducts. The theory
outlined here will be approximately applicable to the latter case.

The model is based on a suggestion of Moldover! that placing a duct array
at the center of a cavity will affect longitudinal modes differently, depending
on the mode index. Modes with an odd number of half wavelengths in the
cavity length have a velocity antinode at the (axial) center of the cavity so
the interaction with the duct array will be primarily viscous. Even-numbered
modes have a velocity node at the center so the viscous interaction will be
weak. However, there will be a temperature (and pressure) antinode at the
center so that thermal effects will dominate the interaction.

2 Acoustic model

Consider the following model: The geometry is approximately equivalent to
a parallel set of cavities, each cavity consisting of similar units. Let z be
the coordinate along any minicavity axis. From z = 0 to 2 = L, and from
z=ULc+ Lg to z = 2L, + Ly a slip boundary condition will be assumed,
t.e. no viscous interaction with the walls; also the cross sectional area A’
in these regions is taken equal to the geometric cross-section. From z = I,
to z = L. + L4 assume the sound is propagated in a duct of cross-sectional
area A < A', with propagation parameters given by the circular duct model
described in Part IT of report. Circular ducts should be a, good approximation
to the hexagonal ducts. Comparisons between square and circular ducts have
been made by Roh et al?

The resonator sections can be described in a transmission line model. The

1Michael R. Moldover, private communication

2H.S. Roh, W.P. Arnott, J. M. Sabatier, and R.. Raspet, “Measurement and calculation
of acoustic propagation constants in arrays of small air-filled rectangular tubes,” J. Acoust.
Soc. Am. 89, 2617-2624 (1991).
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relevant equations are

op
3= - 2z (1)
ou
5 =—Jp _ (2)
= -2-%1 _1 = series impedance (3)
y= —Z::Tf[l + (v — 1) Fy] = shunt admittance (4)
Zy = \/Z /Y = characteristic impedance (5)
I' = VZY = propagation parameter (6)
Fo = 2J1(Q)/[¢H(Q)], ¢ = (1 —i)ra/é, (7)
Fe=20(0/KH(Q)], €= (1—i)ra/s. (®)

Consider the cavity in 0 < z < L.. If dissipation is neglected in this
region the acoustic pressure and volume velocity are

P =pocoskz
' 9
U= i&sin kz. )
1pc

The acoustic impedance at z = L., defined as the ratio of the pressure to the
volume velocity, is
Z(L.). = — P (10)
T A tan(kL.)

The fields in the viscometer as a whole must be either symmetric or
antisymmetric. It is simpler to construct solutions by taking this symmetry
explicitly into account. For the anti-symmetric solutions, with z/ = L, 4
La/2 — z, the pressure and volume velocity are

p = pysinh I'z’

11
U= ——;l cosh I'2’, (11)

0
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and for the symmetric case

p=pycosh Iz

12
U=L2gnhry. (12)
Zy
The impedance at z = L, for these solutions is
—Zotanh(I'Lg/2), anti tri
Z(L.), = otanh(I"Ly/2), an 1symn.1e ric (13)
Zocoth(I'Lyq/2),  symmetric.
The condition for resonance is that Z(L.)- + Z(L.)+ = 0, or
ipc tanh(I'L4/2),  antisymmetric (14)
A'tankL, ~ °° -,_I},coth(FLd/ 2), symmetric.
The antisymmetric case simplifies upon use of
_ _ wwply :
ZoI'Ly=ZLg = —————A(l —F) (15)
o 24(1— F) [ T'Ly/2
’ — Ly d
c = . 1
A'tan kL FL, [ta,nh(FLd/2)J (16)
Similarly, the symmetric case simplifies upon use of
FLd pC2 ; -“
== = * 17
Zg Yl [z'wA[l Fo-nRk (17)
o tanh(I'Ly/2)
! =1kL.A — fanL b/ )
A'tan kL. ="3kLiA[l + (v — 1)F)] [ TL.2 J . (18)

For short ducts the ratios of the hyperbolic tangent to its argument can be
approximated by unity. If in addition kL, is small, the solutions for the
symmetric case will have small values of tan kL. determined primarily by
thermal effects, and the solutions for the antisymmetric case will have large
values of tan kL. determined primarily by viscous effects.
To proceed further let
Ir

KL.= 7 + AkL (19)
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so that
—cot(AkL,) for ! odd

tan(kLe) = {tan(AkLc) for [ even.

The odd-I solutions have overall antisymmetry; the antisymmetric boundary
condition requires

(20)

(21)

2 A1-F,
i.e. the losses are dominated by viscous effects. Similarly, for the even-I
symimnetric cases

~kLs A
AkLe & ‘2—dz[1 +(y=1)F, (22)
t.e. the losses are dominated by thermal effects.
Numerical techniques may be more appropriate than an algebraic ap-
proach for the case where kL, is not small. It may be simplest to handle this

within a steady-state response calculation.

3 Improved model

An improved model is obtained by accounting for viscothermal boundary
effects in the end cavities in the usual way. It is then appropriate to consider
the array of ducts as a set of N parallel transmission lines. each of cross-
sectional area A. The resonance condition is

Z(Le)-+ NZ(Le)y = 0 | (23)

where Z(L.)_ is similar to the previous expression

tpc

Z(Lc)z Al tan(()l + &1 L,) ) (24)
Here A’ is now the total cross-sectional area of the cavity, and a complex prop-
agation parameter and phase shift have been introduced in order to satisfy
the visco-thermal boundary conditions in the cavity. The cavity impedance
should also be modified’by the addition of a mass end correction, as discussed
in Parts I and II. However, this correction should be calculated based on the
assumption that the wave field expands only from an area A to a fractional
area A’/N. In such a case both the Ingard theory and numerical techniques
show that the mass end correction is much smaller than v/A.
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4 Numerical test

A numerical test of the dissipation-free case was carried out with the BIE
software. The cavity dimensions correspond to one of the experimental vis-
cometers: L./r. = 39.776/20, Ly/r. = 48/20. Calculations were carried out
for a large duct with r4/r. = 0.8. The eigenfunction is shown as a function
of arc length measured from the center of the cavity in Fig. 1. Note that the
eigenfunction varies with arc length along the baffle outside the duct. This
shows up as a discontinuity in pressure when the same data are plotted as a
function of z/L, in Fig. 2. Theoretical lines corresponding to the waveguide
formalism are also shown. The two lines were calculated with the numerical
value of k and the value determined from Eq. (15), which was about 1.4%
higher. The effects on the eigenfunction are minimal.
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Figure 1: Numerical calculation of the eigenfunction for the dissipation-free
case. The vertical lines mark the positions of the corner at z — 0, r=r, the
corner at z = L., r = r,, and the entrance to the duct.
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Figure 2: Numerical calculation of the eigenfunction for the dissipation-free
case, compared with calculated lines using the formalism of this report.




